留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界形变可控混响室场分布特性分析

贾锐 王川川 王鹏 戴幻尧 马磊

贾锐, 王川川, 王鹏, 等. 边界形变可控混响室场分布特性分析[J]. 强激光与粒子束, 2024, 36: 123002. doi: 10.11884/HPLPB202436.240104
引用本文: 贾锐, 王川川, 王鹏, 等. 边界形变可控混响室场分布特性分析[J]. 强激光与粒子束, 2024, 36: 123002. doi: 10.11884/HPLPB202436.240104
Jia Rui, Wang Chuanchuan, Wang Peng, et al. Analysis of field distribution characteristics of controllable boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2024, 36: 123002. doi: 10.11884/HPLPB202436.240104
Citation: Jia Rui, Wang Chuanchuan, Wang Peng, et al. Analysis of field distribution characteristics of controllable boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2024, 36: 123002. doi: 10.11884/HPLPB202436.240104

边界形变可控混响室场分布特性分析

doi: 10.11884/HPLPB202436.240104
基金项目: 国家自然科学基金项目(61801480)
详细信息
    作者简介:

    贾 锐,jiarui315@163.com

  • 中图分类号: TM15

Analysis of field distribution characteristics of controllable boundary deformation reverberation chamber

  • 摘要: 分析了边界形变对混响室谐振频率漂移的影响,并提供了一种边界形变可控的混响室反射面设计。将传统机械搅拌器改变为褶皱墙面,通过控制相邻反射模块的夹角,达到改变边界条件的目的。构建了5 m×4 m×3 m混响室腔体仿真模型,从场均匀性、搅拌效率和场分布规律三个方面分析了边界形变可控混响室的有效性,结果表明测试区域电场标准偏差低于3 dB,搅拌效率高于传统机械搅拌器,测试区域电场服从理想混响室分布规律,该方法可有效增加混响室测试区域空间。
  • 图  1  边界形变可控混响室反射面设计流程图

    Figure  1.  Flowchart for the design of reflective surfaces in a controllable boundary deformation reverberation chamber

    图  2  常规混响室内壁反射面结构示意图

    Figure  2.  Schematic diagram of the reflective surface structure on the inner wall of a conventional reverberation chamber

    图  3  边界形变可控的混响室内壁反射面结构示意图

    Figure  3.  Schematic diagram of the reflective surface structure on the inner wall of a controllable boundary deformation reverberation chamber

    图  4  机械搅拌混响室和边界形变混响室的独立搅拌位置数量对比

    Figure  4.  Comparison of the number of independent stirring positions between mechanically stirred reverberation chamber and boundary-deformation-based reverberation chamber

    图  5  电场各分量及总电场的频域标准偏差

    Figure  5.  Frequency domain standard deviation of each component of the electric field and the total electric field

    图  6  电场分量实部虚部的概率密度函数

    Figure  6.  Probability density function of the real and imaginary parts of electric field components

    图  7  单一方向电场分量的概率密度函数

    Figure  7.  Probability density function of electric field components in a single direction

    图  8  电场各分量的累计概率密度函数曲线

    Figure  8.  Cumulative probability density function curves of each electric field component

  • [1] IEC 61000-4-21, Electromagnetic compatibility (EMC)—Part 4-21: testing and measurement techniques—reverberation chamber test methods[S].
    [2] GB/T 17626.21-2014, 电磁兼容 试验和测量技术 混波室试验方法[S]

    GB/T 17626.21-2014, Electromagnetic compatibility—testing and measurement techniques—reverberation chamber test methods[S]
    [3] 王庆国, 程二威. 电波混响室理论与应用[M]. 北京: 国防工业出版社, 2013

    Wang Qingguo, Cheng Erwei. Theories and applications of electromagnetic reverberation chamber[M]. Beijing: National Defense Industry Press, 2013
    [4] Xu Qian, Huang Yi, Xing Lei, et al. Extract the decay constant of a reverberation chamber without satisfying Nyquist criterion[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(3): 153-155. doi: 10.1109/LMWC.2016.2526027
    [5] Moglie F, Bastianelli L, Primiani V M. Reliable finite-difference time-domain simulations of reverberation chambers by using equivalent volumetric losses[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 653-660. doi: 10.1109/TEMC.2016.2548520
    [6] 姜林, 王庆国, 程二威. 机械搅拌混响室独立样本数建模及实验[J]. 强激光与粒子束, 2013, 25(11):3050-3054 doi: 10.3788/HPLPB20132511.3050

    Jiang Lin, Wang Qingguo, Cheng Erwei. Modelling and experimental study of the number of independent samples in reverberation chamber with mechanical stirring[J]. High Power Laser and Particle Beams, 2013, 25(11): 3050-3054 doi: 10.3788/HPLPB20132511.3050
    [7] Xu Qian, Huang Yi, Xing Lei, et al. B-scan in a reverberation chamber[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1740-1750. doi: 10.1109/TAP.2016.2535121
    [8] 贾锐, 王庆国, 程二威. 混响室条件下的辐射敏感度测试新方法[J]. 电波科学学报, 2012, 27(3):532-537

    Jia Rui, Wang Qingguo, Cheng Erwei. New method of susceptibility test in reverberation chamber[J]. Chinese Journal of Radio Science, 2012, 27(3): 532-537
    [9] 张华彬, 赵翔, 周海京, 等. 混响室的概率统计分析方法及其蒙特卡罗模拟[J]. 强激光与粒子束, 2011, 23(9):2475-2480 doi: 10.3788/HPLPB20112309.2475

    Zhang Huabin, Zhao Xiang, Zhou Haijing, et al. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(9): 2475-2480 doi: 10.3788/HPLPB20112309.2475
    [10] Yousaf J, Nah W, Hussein M I, et al. Characterization of reverberation chamber—a comprehensive review[J]. IEEE Access, 2020, 8: 226591-226608. doi: 10.1109/ACCESS.2020.3045028
    [11] 赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001 doi: 10.11884/HPLPB202032.200079

    Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079
    [12] 贾锐, 耿利飞, 王川川, 等. 混响室内加载物损耗特性试验研究[J]. 强激光与粒子束, 2022, 34:113003 doi: 10.11884/HPLPB202234.220039

    Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003 doi: 10.11884/HPLPB202234.220039
    [13] 程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33:123002 doi: 10.11884/HPLPB202133.210472

    Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002 doi: 10.11884/HPLPB202133.210472
    [14] Hill D A. Electromagnetic fields in cavities: Deterministic and statistical theories[M]. Piscataway: Wiley-IEEE Press, 2009.
    [15] 程二威, 王平平, 张怡, 等. 边界形变互耦混响室屏蔽效能测试技术研究[J]. 高电压技术, 2023, 49(7):3102-3109

    Cheng Erwei, Wang Pingping, Zhang Yi, et al. Research on shielding effectiveness test technology of boundary deformation mutual coupling reverberation chamber[J]. High Voltage Engineering, 2023, 49(7): 3102-3109
  • 加载中
图(8)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  33
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-10-18
  • 录用日期:  2024-10-18
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回