留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段MW级高效互耦磁控管模式分布调控

郑琼 毕亮杰 沈大贵 李海龙 秦雨 王彬 蒙林 殷勇

郑琼, 毕亮杰, 沈大贵, 等. S波段MW级高效互耦磁控管模式分布调控[J]. 强激光与粒子束, 2024, 36: 083007. doi: 10.11884/HPLPB202436.240109
引用本文: 郑琼, 毕亮杰, 沈大贵, 等. S波段MW级高效互耦磁控管模式分布调控[J]. 强激光与粒子束, 2024, 36: 083007. doi: 10.11884/HPLPB202436.240109
Zheng Qiong, Bi Liangjie, Shen Dagui, et al. Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 083007. doi: 10.11884/HPLPB202436.240109
Citation: Zheng Qiong, Bi Liangjie, Shen Dagui, et al. Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 083007. doi: 10.11884/HPLPB202436.240109

S波段MW级高效互耦磁控管模式分布调控

doi: 10.11884/HPLPB202436.240109
基金项目: 四川省自然科学基金项目(2023NSFSC1376)
详细信息
    作者简介:

    郑 琼,zhengqvae@163.com

    通讯作者:

    毕亮杰,blj@uestc.edu.cn

  • 中图分类号: TN123

Mode distribution control of S-band MW-level high-efficiency mutual coupling magnetron

  • 摘要: 磁控管高效互耦锁相为基于电真空振荡器的高效率、高功率阵列提供了一种有效的技术方案。互耦结构的引入使得互耦磁控管整体上建立了新的谐振模式序列,其中满足互耦磁控管高效锁相的模式为期望的锁相模式。然而,锁相模式易受到模式序列中邻近模式的干扰,导致工作不稳定。提出一种等效电路与本征模分析相结合调控模式分布的方法,通过调控模式频率分隔,使锁相模式单模工作;同时建立磁控管工作模式与互耦结构耦合场匹配的谐振条件,实现磁控管的高效互耦锁相。为了验证该方法的有效性,设计了基于S波段MW级磁控管高效互耦模型,对锁相模式工作特性进行了粒子模拟,模拟结果表明互耦模型可以稳定工作在高效锁相模式:0相位差模式和π相位差模式,锁定频率约为2.545 GHz,接近磁控管单管自由振荡频率。每只磁控管的输出功率接近单管自由运行时的输出功率,电子效率与单管几乎相同,互耦锁相效率达到了99%,实现了高效锁相。
  • 图  1  互耦振荡器锁定相位差随桥长的变化

    Figure  1.  Locked phase difference of the mutual coupling oscillator varies with the bridge length

    图  2  高效互耦锁相磁控管简化模型

    Figure  2.  Simplified model of high-efficiency mutual coupling phase-locked magnetron

    图  3  等效电路模型

    Figure  3.  Equivalent circuit model

    图  4  双管高效互耦锁相结构示意图

    Figure  4.  Schematic diagram of double-tube high-efficiency mutual coupling phase-locked structure

    图  5  $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $/2时的π相位差模场分布图和$ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $ 时的0相位差模、π-模、π+模场分布图

    Figure  5.  Electric field distributions of π phase difference mode at $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $/2 and 0 phase difference mode, π- mode, π+ mode at $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $

    图  6  模式频率随桥长的变化,其中实线代表理论曲线,散点代表仿真结果,阴影部分为吻合区

    Figure  6.  Mode frequency varies with the bridge length, where the solid line represents the theoretical curve and the scattered points represent the simulation results , and the shadow part is the overlapping area

    图  7  电子相空间

    Figure  7.  Electronic phase space

    图  8  $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}}/2 $时的粒子模拟结果

    Figure  8.  PIC results at $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}}/2 $

    图  10  不同$ \mathrm{\alpha } $对应的输出信号傅里叶变换频谱

    Figure  10.  Fourier transform spectrum of the output signal corresponding to different α

    图  11  不同对应的频谱中各频率峰处的场分布

    Figure  11.  Field distribution at each frequency peak in the spectrums corresponding to different $ \alpha $

    图  9  不同$ \alpha $对应的输出信号

    Figure  9.  Output signal corresponding to different α

    图  12  $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $时的粒子模拟结果

    Figure  12.  PIC results at $ {L}_{\mathrm{c}}={\lambda }_{\mathrm{g}} $

    表  1  不同α对应的频率分隔

    Table  1.   Frequency separation corresponding to different α

    α flow/GHz flocking/GHz fhigh/GHz |flockingflow|/GHz |flockingfhigh|/GHz
    0.7 2.443 2.573 0.130
    1.0 2.340 2.545 2.755 0.205 0.210
    1.1 2.315 2.542 2.731 0.227 0.189
    1.3 2.515 2.630 0.115
    下载: 导出CSV
  • [1] Trew R J. High-frequency solid-state electronic devices[J]. IEEE Transactions on Electron Devices, 2005, 52(5): 638-649. doi: 10.1109/TED.2005.845862
    [2] Andreev A D. Computer simulations of frequency- and phase-locking of cavity magnetrons[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(12): 1501-1518. doi: 10.1080/09205071.2018.1452636
    [3] Chen Cheng, Huang Kama, Yang Yang. Microwave transmitting system based on four-way master-slave injection-locked magnetrons and horn arrays with suppressed sidelobes[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2416-2424. doi: 10.1109/TMTT.2018.2790924
    [4] Zhou Hao, Hu Jijun, Shi Jun, et al. Cascaded relativistic magnetron with phase-locked multiport extraction[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4854-4859. doi: 10.1109/TED.2023.3294455
    [5] Fu Wenjie, Yan Yang, Li Xiaoyun. Investigation of magnetron injection locking and cascaded locking by solid-state microwave power source[J] Journal of Microwave Power and Electromagnetic Energy, 2019, 53(3): 171-183.
    [6] Cruz E J, Hoff B W, Pengvanich P, et al. Experiments on peer-to-peer locking of magnetrons[J]. Applied Physics Letters, 2009, 95: 191503. doi: 10.1063/1.3262970
    [7] Adler R. A study of locking phenomena in oscillators[J]. Proceedings of the IRE, 1946, 34(6): 351-357. doi: 10.1109/JRPROC.1946.229930
    [8] Tahir I, Dexter A, Carter R. Frequency and phase modulation performance of an injection-locked CW magnetron[J]. IEEE Transactions on Electron Devices, 2006, 53(7): 1721-1729. doi: 10.1109/TED.2006.876268
    [9] Chen Xiaojie, Yu Ze, Lin Hang, et al. Improvements in a 20-kW phase-locked magnetron by anode voltage ripple suppression[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1879-1885. doi: 10.1109/TPS.2019.2956868
    [10] Liu Changjun, Huang Heping, Liu Zhengyu, et al. Experimental study on microwave power combining based on injection-locked 15-kW S-band continuous-wave magnetrons[J]. IEEE Transactions on Plasma Science, 2016, 44(8): 1291-1297. doi: 10.1109/TPS.2016.2565564
    [11] Chen Xiaojie, Yang Bo, Shinohara N, et al. A high-efficiency microwave power combining system based on frequency-tuning injection-locked magnetrons[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4447-4452. doi: 10.1109/TED.2020.3013510
    [12] Chen Xiaojie, Yang Bo, Shinohara N, et al. Low-noise dual-way magnetron power-combining system using an asymmetric H-plane tee and closed-loop phase compensation[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(4): 2267-2278. doi: 10.1109/TMTT.2021.3056550
    [13] Yang Bo, Chu Jie, Mitani T, et al. High-power simultaneous wireless information and power transfer system based on an injection-locked magnetron phased array[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(12): 1327-1330. doi: 10.1109/LMWC.2021.3104832
    [14] Huang Heping, Yang Bo, Shinohara N, et al. Coherent power combining of four-way injection-locked 5.8-GHz magnetrons based on a five-port hybrid waveguide combiner[J]. IEEE Transactions on Microwave Theory and Techniques, 2024.
    [15] 谢文楷, 刘盛纲. 微波毫米波功率合成中的锁频和锁相[J]. 电子与信息学报, 1994, 16(4):416-422

    Xie Wenkai, Liu Shenggang. Phase and frequency locking of microwave and millimeter wave power combining[J]. Journal of Electronics & Information Technology, 1994, 16(4): 416-422
    [16] Cheng Renjie, Li Tianming, Wang Jiaoyin, et al. Multiport relativistic magnetron for phased array application[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 1423-1428. doi: 10.1109/TED.2022.3144122
    [17] Liu Jiayang, Zha Hao, Shi Jiaru, et al. First demonstration and performance of X-band high-power magnetron with parallel cathodes[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3960-3965. doi: 10.1109/TED.2022.3177390
    [18] Liu Jiayang, Zha Hao, Shi Jiaru, et al. Power combining of dual X-band coaxial magnetrons based on peer-to-peer locking[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6518-6524. doi: 10.1109/TED.2021.3121225
    [19] Benford J, Sze H, Woo W, et al. Phase locking of relativistic magnetrons[J]. Physical Review Letters, 1989, 62(8): 969-971. doi: 10.1103/PhysRevLett.62.969
    [20] Sze H, Smith R R, Benford J N, et al. Phase-locking of strongly coupled relativistic magnetrons[J]. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 235-241. doi: 10.1109/15.155835
    [21] Levine J S, Aiello N, Benford J, et al. Design and operation of a module of phase-locked relativistic magnetrons[J]. Journal of Applied Physics, 1991, 70(5): 2838-2848. doi: 10.1063/1.349347
    [22] Levine J S, Benford J, Sze H, et al. Strongly coupled relativistic magnetrons for phase-locked arrays[C]//Proceedings of the SPIE 1061, Microwave and Particle Beam Sources and Directed Energy Concepts. 1989.
    [23] Song Minsheng, Bi Liangjie, Meng Lin, et al. High-efficiency phase-locking of millimeter-wave magnetron for high-power array applications[J]. IEEE Electron Device Letters, 2021, 42(11): 1658-1661. doi: 10.1109/LED.2021.3112563
    [24] 王文祥. 微波工程技术[M]. 2版. 北京: 国防工业出版社, 2014

    Wang Wenxiang. Microwave engineering technology[M]. 2nd ed. Beijing: National Defense Industry Press, 2014
    [25] 谢处方, 饶克谨, 杨显清, 等. 电磁场与电磁波[M]. 5版. 北京: 高等教育出版社, 2019

    Xie Chufang, Rao Kejin, Yang Xianqing, et al. Electromagnetic field and electromagnetic wave[M]. 5th ed. Beijing: Higher Education Press, 2019
    [26] Slater J C. Microwave electronics[J]. Reviews of Modern Physics, 1946, 18(4): 441-512. doi: 10.1103/RevModPhys.18.441
    [27] Slater J C. The phasing of magnetrons[M]. Cambridge, MA, RLE Tech. Rep. No. 35, 1947.
    [28] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频[J]. 物理学报, 2013, 62:178401 doi: 10.7498/aps.62.178401

    Yue Song, Zhang Zhaochuan, Gao Dongping. Injection-locking of magnetrons with matched impedance[J]. Acta Physica Sinica, 2013, 62: 178401 doi: 10.7498/aps.62.178401
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  88
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 修回日期:  2024-06-10
  • 录用日期:  2024-06-10
  • 网络出版日期:  2024-06-17
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回