留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于肖特基二极管的310 GHz紧凑型接收机前端

丁江乔 梁启尧 蒋均 刘戈 何月

丁江乔, 梁启尧, 蒋均, 等. 基于肖特基二极管的310 GHz紧凑型接收机前端[J]. 强激光与粒子束, 2024, 36: 083002. doi: 10.11884/HPLPB202436.240119
引用本文: 丁江乔, 梁启尧, 蒋均, 等. 基于肖特基二极管的310 GHz紧凑型接收机前端[J]. 强激光与粒子束, 2024, 36: 083002. doi: 10.11884/HPLPB202436.240119
Ding Jiangqiao, Liang Qiyao, Jiang Jun, et al. 310 GHz compact receiver front-end based on Schottky diode[J]. High Power Laser and Particle Beams, 2024, 36: 083002. doi: 10.11884/HPLPB202436.240119
Citation: Ding Jiangqiao, Liang Qiyao, Jiang Jun, et al. 310 GHz compact receiver front-end based on Schottky diode[J]. High Power Laser and Particle Beams, 2024, 36: 083002. doi: 10.11884/HPLPB202436.240119

基于肖特基二极管的310 GHz紧凑型接收机前端

doi: 10.11884/HPLPB202436.240119
基金项目: 国家自然科学基金项目(12003011)
详细信息
    作者简介:

    丁江乔,jqding@nuist.edu.cn

    通讯作者:

    何 月,heyue1109@163.com

  • 中图分类号: TN957.53

310 GHz compact receiver front-end based on Schottky diode

  • 摘要: 肖特基混频器是固态太赫兹接收系统的关键部件,与基于超导体-绝缘体-超导体混频器、热电子辐射热计混频器的接收机相比,基于肖特基二极管混频器构建的太赫兹接收机系统不依赖低温附属设备,具有成本低、重量轻、体积小、功耗低等优点。目前基于肖特基二极管混频器构建的太赫兹接收前端结构相对复杂,集成度普遍不高且损耗较大。针对太赫兹接收前端结构复杂、集成度低、损耗大等问题,基于太赫兹肖特基二极管设计了288~318 GHz二次谐波混频器及其本振驱动链路,并基于此混频器构建了太赫兹接收机系统。太赫兹接收机本振驱动链路由一个75 GHz的六倍频功放集成模块与一个150 GHz二倍频模块组成。本振链路的集成化设计使得该接收机集成度大大提高,集成模块尺寸为20 mm×20 mm×43 mm,测试结果表明:在288~318 GHz带宽内,实测的双边带变频损耗为5.8~9.4 dB,噪声温度为1 055~1 722 K,具有良好的射频性能。
  • 图  1  肖特基二极管模型

    Figure  1.  Schottky diode model

    图  2  低通滤波器模型

    Figure  2.  Low-pass filter model

    图  3  中频低通滤波器S参数

    Figure  3.  IF low-pass filter S parameter

    图  4  本振低通滤波器S参数

    Figure  4.  LO low-pass filter S parameter

    图  5  310 GHz谐波混频器整体结构

    Figure  5.  Overall structure of the 310 GHz sub-harmonic mixer

    图  6  310 GHz谐波混频器仿真结果

    Figure  6.  Simulated results of the 310 GHz sub-harmonic mixer

    图  7  级联电阻Rs仿真结果

    Figure  7.  Simulated results of the series resistance

    图  8  310 GHz超外差接收机结构框图

    Figure  8.  Schematic of 310 GHz heterodyne receiver

    图  9  78 GHz波导带通滤波器

    Figure  9.  78 GHz waveguide bandpass filter

    图  10  78 GHz波导带通滤波器仿真结果

    Figure  10.  Simulated results of the 78 GHz waveguide bandpass filter

    图  11  E波段探针结构仿真结果

    Figure  11.  Simulated results of the probe

    图  12  E波段集成模块外观

    Figure  12.  Photo of the integrated module

    图  13  E波段集成模块功率测试结果

    Figure  13.  Measured results of the power

    图  14  集成模块频谱测试

    Figure  14.  Measured results of the frequency spectrum

    图  15  E波段集成倍频模块相位噪声测试

    Figure  15.  Measured results of the phase noise

    图  16  310 GHz接收机测试

    Figure  16.  Measurement of the 310 GHz receiver

    图  17  接收机测试结果

    Figure  17.  Measured results of the receiver

    表  1  太赫兹接收机性能对比

    Table  1.   Performance comparison of terahertz receivers

    Ref. type frequency/GHz conversion loss/dB sideband integration
    [8] mixer 360~440 9.99~16 single
    [10] mixer 320~360 6.9~10 double
    [14] receiver 330 11~13 single yes
    [16] mixer 320~360 7.2~24.1 single
    [17] receiver 340 16 single no
    this work receiver 288~318 5.8~9.4 double yes
    下载: 导出CSV
  • [1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928. doi: 10.1109/22.989974
    [2] Reck T, Jung-Kubiak C, Siles J V, et al. A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 197-206. doi: 10.1109/TTHZ.2015.2397274
    [3] Zhang Wen, Miao Wei, Ren Yuan, et al. Superconducting hot-electron bolometer mixers and their applications[J]. Superconductivity, 2022, 2: 100009. doi: 10.1016/j.supcon.2022.100009
    [4] 王成, 陆彬, 缪丽, 等. 0.34 THz无线通信收发前端[J]. 强激光与粒子束, 2013, 25(6):1530-1534 doi: 10.3788/HPLPB20132506.1530

    Wang Cheng, Lu Bin, Miao Li, et al. 0.34 THz T/R front-end for wireless communication[J]. High Power Laser and Particle Beams, 2013, 25(6): 1530-1534 doi: 10.3788/HPLPB20132506.1530
    [5] Cohn M, Degenford J E, Newman B A. Harmonic mixing with an anti-parallel diode pair[C]//S-MTT International Microwave Symposium Digest. 1974: 171-172.
    [6] Thomas B, Maestrini A, Beaudin G. A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(12): 865-867. doi: 10.1109/LMWC.2005.859992
    [7] 胡海帆, 马旭明, 马喆, 等. 220 GHz二次谐波混频器集成模块[J]. 红外与激光工程, 2021, 50:20210078 doi: 10.3788/IRLA20210078

    Hu Haifan, Ma Xuming, Ma Zhe, et al. 220 GHz sub-harmonic mixer integrated module[J]. Infrared and Laser Engineering, 2021, 50: 20210078 doi: 10.3788/IRLA20210078
    [8] Min Wenchao, Sun Hao, Zhang Qilian, et al. A high-performance W-band subharmonic mixer based on anti-parallel diode pair[J]. Chinese Journal of Electron Devices, 2016, 39(6): 1283-1286.
    [9] 刘戈, 张波, 张立森, 等. 基于二极管3D精确模型的0.42 THz分谐波混频器[J]. 红外与毫米波学报, 2018, 37(3):338-343

    Liu Ge, Zhang Bo, Zhang Lisen, et al. 0.42 THz subharmonic mixer based on 3D precisely modeled diode[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 338-343
    [10] Liu Yang, Zhang Bo, Feng Yinian, et al. Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array[J]. Applied Sciences, 2020, 10: 7924. doi: 10.3390/app10217924
    [11] Feng Wei, Yang Penglin, Sun Xuechun, et al. Development of 0.34 THz sub-harmonic mixer combining two-stage reduced matching technology with an improved active circuit model[J]. Applied Sciences, 2022, 12: 12855. doi: 10.3390/app122412855
    [12] Guo Cheng, Shang Xiaobang, Lancaster M J, et al. A 290-310GHz single sideband mixer with integrated waveguide filters[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(4): 446-454. doi: 10.1109/TTHZ.2018.2841771
    [13] Liu Jun, He Wei, Qiao Haidong, et al. The study and application of D-band radiometer front-end[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 704-708.
    [14] 凌清岚, 姚常飞, 张炎. 330GHz集成化收发组件的设计与实现[J/OL]. 微波学报, 1-6[2024-03-19]. http://kns.cnki.net/kcms/detail/32.1493.TN.20231213.1716.014.html

    Ling Qinglan, Yao Changfei, Zhang Yan. Design and implementation of 330 GHz integrated T/R module[J/OL]. Journal of Microwaves, 1-6[2024-03-19]. http://kns.cnki.net/kcms/detail/32.1493.TN.20231213.1716.014.html.
    [15] 陆彬, 崔博华. 太赫兹波导滤波器的分析与设计[J]. 强激光与粒子束, 2013, 25(6):1527-1529 doi: 10.3788/HPLPB20132506.1527

    Lu Bin, Cui Bohua. Analysis and design of terahertz waveguide filter[J]. High Power Laser and Particle Beams, 2013, 25(6): 1527-1529 doi: 10.3788/HPLPB20132506.1527
    [16] Thomas B, Rea S, Moyna B, et al. A 320-360 GHz subharmonically pumped image rejection mixer using planar Schottky diodes[J]. IEEE Microwave and Wireless Components letters, 2009, 19(2): 101-103. doi: 10.1109/LMWC.2008.2011332
    [17] Ai Caijie, Zhang Yong, Chen Zhongfei. Design and test of 0.33THz receiver front-end[C]//2015 IEEE International Conference on Communication Problem-Solving (ICCP). 2015: 215-217.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  79
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-06-06
  • 录用日期:  2024-05-15
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回