留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压控型脉冲功率半导体器件技术及应用

孙瑞泽 陈万军 刘超 刘红华 姚洪梅 张波

孙瑞泽, 陈万军, 刘超, 等. 压控型脉冲功率半导体器件技术及应用[J]. 强激光与粒子束, 2024, 36: 095001. doi: 10.11884/HPLPB202436.240120
引用本文: 孙瑞泽, 陈万军, 刘超, 等. 压控型脉冲功率半导体器件技术及应用[J]. 强激光与粒子束, 2024, 36: 095001. doi: 10.11884/HPLPB202436.240120
Sun Ruize, Chen Wanjun, Liu Chao, et al. Technology and application of the voltage-controlled pulse power semiconductor devices[J]. High Power Laser and Particle Beams, 2024, 36: 095001. doi: 10.11884/HPLPB202436.240120
Citation: Sun Ruize, Chen Wanjun, Liu Chao, et al. Technology and application of the voltage-controlled pulse power semiconductor devices[J]. High Power Laser and Particle Beams, 2024, 36: 095001. doi: 10.11884/HPLPB202436.240120

压控型脉冲功率半导体器件技术及应用

doi: 10.11884/HPLPB202436.240120
基金项目: 国家自然科学基金项目(62334003)
详细信息
    作者简介:

    孙瑞泽,rzsun@uestc.edu.cn

    通讯作者:

    陈万军,wjchen@uestc.edu.cn

  • 中图分类号: TN386

Technology and application of the voltage-controlled pulse power semiconductor devices

  • 摘要: 近年来,采用新一代半导体开关替代传统气体或真空开关是脉冲功率系统的一种重要发展趋势。为了给脉冲功率半导体器件领域的技术发展提供参考,简要介绍了压控型脉冲功率半导体器件技术的发展历程,总结了MOS栅控晶闸管(MCT)在器件设计、工艺和可靠性等方面的研究进展,同时通过比较MCT与一般商业IGBT器件,阐述了MCT相比于其他功率脉冲半导体器件的优劣情况,并结合典型应用场景展示了MCT器件的优势,对压控型脉冲功率半导体器件的发展趋势进行了简要分析。
  • 图  1  脉冲功率技术的能量压缩-存储-释放示意图

    Figure  1.  Schematic diagram of energy compression-storage-release in pulse power technology

    图  2  电容储能型脉冲功率电路放电回路等效模型

    Figure  2.  Equivalent model of capacitor energy storage pulse power circuit

    图  3  MCT器件结构示意图及其等效电路

    Figure  3.  Structure schematic and equivalent circuit of MCT device

    图  4  MCT和IGBT性能测试对比

    Figure  4.  Comparison of MCT and IGBT performance tests

    图  5  CS-MCT与传统MCT元胞结构与等效电路

    Figure  5.  Cross-section schematic and equivalent circuit diagram of CS-MCT and equivalent circuit of conventional MCT

    图  6  CS-MCT与传统MCT的仿真性能对比

    Figure  6.  Simulation comparison between CS-MCT and conventional MCT

    图  7  高阳极注入效率的FS型MCT元胞结构与工作机理

    Figure  7.  Cross-section schematic of HiA-MCT and operation mechanism

    图  8  HiA-MCT与传统MCT脉冲特性对比及载流子浓度分布对比

    Figure  8.  Pulse output characteristics and carrier concentration distribution of HiA-MCT and con-MCT

    图  9  SB-MCT器件结构示意图及其等效电路图

    Figure  9.  SB-MCT device structure schematic and equivalent circuit diagram

    图  10  SB-MCT与常规CS-MCT工作特性

    Figure  10.  Operation characteristics of SB-MCT and conventional CS-MCT

    图  11  电压为1 100 V时MCT单次脉冲放电波形

    Figure  11.  MCT single pulse discharge waveform with voltage of 1 100 V

    图  12  MCT器件重复脉冲放电波形图

    Figure  12.  Repetitive pulse discharge waveform of MCT

    图  13  基于MCT的PFN电路脉冲放电波形

    Figure  13.  Pulse discharge waveform of Pulse Forming Network (PFN) circuit based on MCT

    图  14  基于MCT的高压直流断路器电路原理图和原型电路

    Figure  14.  Circuit schematic and prototype of high-voltage DC circuit breaker based on MCT

  • [1] 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1):10-15 doi: 10.3788/HPLPB20122401.0010

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10-15 doi: 10.3788/HPLPB20122401.0010
    [2] Baliga B J, Chang H R. The MOS depletion-mode thyristor: a new MOS-controlled bipolar power device[J]. IEEE Electron Device Letters, 1988, 9(8): 411-413. doi: 10.1109/55.761
    [3] Chen Wanjun, Liu Chao, Tang Xuefeng, et al. High peak current MOS gate-triggered thyristor with fast turn-on characteristics for solid-state closing switch applications[J]. IEEE Electron Device Letters, 2016, 37(2): 205-208. doi: 10.1109/LED.2015.2511182
    [4] Chen Wanjun, Liu Chao, Tang Xuefeng, et al. Experimentally demonstrate a cathode short MOS-controlled thyristor (CS-MCT) for single or repetitive pulse applications[C]//2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 2016: 311-314.
    [5] Chen Wanjun, Liu Chao, Shi Yijun, et al. Design and characterization of high di/dt CS-MCT for pulse power applications[J]. IEEE Transactions on Electron Devices, 2017, 64(10): 4206-4212. doi: 10.1109/TED.2017.2736529
    [6] Liu Chao, Chen Wanjun, Sun Ruize, et al. High voltage insulated gate trigger thyristor with high-efficiency injection for fast turn-on and high current pulse[J]. IEEE Electron Device Letters, 2019, 40(12): 1965-1968. doi: 10.1109/LED.2019.2945335
    [7] Liu Chao, Chen Wanjun, Shi Yijun, et al. A novel insulated gate triggered thyristor with Schottky barrier for improved repetitive pulse life and high-di/dt characteristics[J]. IEEE Transactions on Electron Devices, 2019, 66(2): 1018-1025. doi: 10.1109/TED.2018.2887137
    [8] Shinohe T, Nakagawa A, Minami Y, et al. Ultra-high di/dt 2500 V MOS assisted gate-triggered thyristors (MAGTs) for high repetition excimer laser system[C]//International Technical Digest on Electron Devices Meeting. 1989: 301-304.
    [9] Shinohe T, Minami Y, Sato S, et al. Device parameter analysis for direct replacement of thyratrons with MAGTs[C]//Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs. 1993: 77-81.
    [10] Sakugawa T, Kouno K, Kawamoto K, et al. High repetition rate pulsed power generator using IGBTs and magnetic pulse compression circuit[C]//2009 IEEE Pulsed Power Conference. 2009: 394-398.
    [11] Bayne S B, Portnoy W M, Hefner A R. MOS-gated thyristors (MCTs) for repetitive high power switching[J]. IEEE Transactions on Power Electronics, 2001, 16(1): 125-131. doi: 10.1109/63.903997
    [12] 陈楠, 陈万军, 尚建蓉, 等. 基于新型绝缘栅触发晶闸管的高功率准矩形脉冲源[J]. 电子与封装, 2021, 21:120302

    Chen Nan, Chen Wanjun, Shang Jianrong, et al. High-power quasi-rectangular pulse generation based on a novel insulated gate trigger thyristor[J]. Electronics & Packaging, 2021, 21: 120302
    [13] Xu Xiaorui, Chen Wanjun, Tao Hong, et al. Design and experimental verification of an efficient SSCB based on CS-MCT[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 11682-11693. doi: 10.1109/TPEL.2020.2987418
    [14] Xu Xiaorui, Chen Wanjun, Zhang Shuyi, et al. Design of an isolated circuit breaker with robust interruption capability for DC microgrid protection[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12408-12417. doi: 10.1109/TIE.2020.3039210
    [15] Xu Xiaorui, Chen Wanjun, Liu Chao, et al. An efficient and reliable solid-state circuit breaker based on mixture device[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 9767-9771. doi: 10.1109/TPEL.2021.3067316
    [16] Song Xiaoqing, Cairoli P, Du Yu, et al. A review of thyristor based DC solid-state circuit breakers[J]. IEEE Open Journal of Power Electronics, 2021, 2: 659-672. doi: 10.1109/OJPEL.2021.3134640
    [17] Song Xiaoqing, Huang A Q, Lee M, et al. 22 kV SiC Emitter turn-off (ETO) thyristor and its dynamic performance including SOA[C]//2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD). 2015: 277-280.
  • 加载中
图(14)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  51
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-07-18
  • 录用日期:  2024-07-18
  • 网络出版日期:  2024-07-24
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回