留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁阻型线圈发射器电路拓扑优化与性能提升

王振春 胡言 张玉婷

王振春, 胡言, 张玉婷. 磁阻型线圈发射器电路拓扑优化与性能提升[J]. 强激光与粒子束, 2024, 36: 095002. doi: 10.11884/HPLPB202436.240123
引用本文: 王振春, 胡言, 张玉婷. 磁阻型线圈发射器电路拓扑优化与性能提升[J]. 强激光与粒子束, 2024, 36: 095002. doi: 10.11884/HPLPB202436.240123
Wang Zhenchun, Hu Yan, Zhang Yuting. Circuit topology optimization and performance improvement of magnetic resistance coil launcher[J]. High Power Laser and Particle Beams, 2024, 36: 095002. doi: 10.11884/HPLPB202436.240123
Citation: Wang Zhenchun, Hu Yan, Zhang Yuting. Circuit topology optimization and performance improvement of magnetic resistance coil launcher[J]. High Power Laser and Particle Beams, 2024, 36: 095002. doi: 10.11884/HPLPB202436.240123

磁阻型线圈发射器电路拓扑优化与性能提升

doi: 10.11884/HPLPB202436.240123
基金项目: 省级重点实验室绩效补助经费项目(22567612H)
详细信息
    作者简介:

    王振春,zcwang@ysu.edu.cn

  • 中图分类号: TJ339

Circuit topology optimization and performance improvement of magnetic resistance coil launcher

  • 摘要: 为提高线圈发射器的发射速度及能量利用率,研究了磁阻型电磁线圈发射器不同放电电路结构对发射性能的影响。对晶闸管式(SCR)、半桥式、阻容(RCD)吸收式、Boost-Buck式四种不同结构放电电路进行分析,使用有限元方法研究了四种电路对发射性能的影响。结果表明,相同条件下,相比SCR式电路,三种可关断电路中,Boost-Buck式电路下电枢出口速度提升最少,为78.77%;RCD式电路下系统能量利用率提升最少,为220.66%。可关断电路中电流的衰减速率会影响电枢的加速度,存在最优电流衰减速率曲线;单级可关断电路中出口速度与系统能量利用率搭配最均衡的为半桥式放电电路;Boost-Buck式放电电路更具灵活性,更适合应用于多级线圈发射器中。
  • 图  1  发射器2D模型示意图及等效电路

    Figure  1.  Schematic diagram and equivalent circuit of the 2D model of the transmitter

    图  2  四种放电电路原理图

    Figure  2.  Schematics of four types of discharge circuits

    图  3  磁阻发射系统2D模型

    Figure  3.  2D model of reluctance electromagnetic coil launcher

    图  4  各电路下发射器性能指标

    Figure  4.  Transmitter performance indicators under different circuit

    图  5  优化后各电路下发射器性能指标

    Figure  5.  Optimized transmitter performance indicators under different circuit

    表  1  电路开关类型及电路功能

    Table  1.   Circuit switch types and circuit functions

    circuit switchability switch type switch number required energy recovery
    SCR type discharge circuit non-switchable semi-controlled 1 unrecoverable
    half-bridge type discharge circuit switchable full control 2 recoverable
    RCD absorption type discharge circuit switchable full control 1 unrecoverable
    boost-buck type discharge circuit switchable full control 2 recoverable
    下载: 导出CSV

    表  2  磁阻型电磁线圈发射器模型参数

    Table  2.   Parameters of reluctance electromagnetic coil launcher

    capacitor
    voltage/V
    capacitor
    capacitance/
    mF
    drive
    coil
    turns
    drive coil
    thickness/
    mm
    drive coil
    length/
    mm
    equivalent
    resistance of
    drive coil/mΩ
    equivalent
    inductance of
    drive coil/mH
    armature
    diameter/
    mm
    armature
    length/
    mm
    armature
    quality/
    kg
    armature
    material
    2100 4.7 45 62.5 120 6.2 0.25 120 120 10.68 steel-1008
    下载: 导出CSV

    表  3  均匀实验法下发射器最佳参数

    Table  3.   Optimal parameters of transmitter under uniform design method

    discharge circuit best trigger position/mm delay time/ms
    SCR type −115
    half-bridge type −129 14
    RCD absorption type −131 15
    boost-buck type −134 16
    下载: 导出CSV

    表  4  发射器能量利用率

    Table  4.   Energy utilization of transmitter

    discharge circuit muzzle speed/(m·s−1) relative SCR circuit muzzle speed
    improvement ratio/%
    efficiency/% relative SCR circuit efficiency
    improvement ratio/%
    SCR type 9.61 4.84
    half-bridge type 17.27 79.71 18.63 284.92
    RCD absorption type 17.21 79.08 15.52 220.66
    boost-buck type 17.18 78.77 16.89 248.97
    下载: 导出CSV
  • [1] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15):3943-3959

    Ma Weiming, Lu Junyong. Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959
    [2] 张红旭. 多级磁阻型电磁枪发射效率研究[D]. 南京: 南京理工大学, 2019

    Zhang Hongxu. Study on the firing efficiency of multistage reluctance electromagnetic gun[D]. Nanjing: Nanjing University of Science and Technology, 2019
    [3] 关晓存, 李治源, 赵然, 等. 线圈炮电枢电磁-热耦合仿真分析[J]. 强激光与粒子束, 2011, 23(8):2267-2272 doi: 10.3788/HPLPB20112308.2267

    Guan Xiaocun, Li Zhiyuan, Zhao Ran, et al. Simulation analysis of electromagnetic-thermal coupling for armature in inductive coilgun[J]. High Power Laser and Particle Beams, 2011, 23(8): 2267-2272 doi: 10.3788/HPLPB20112308.2267
    [4] 李超, 鲁军勇, 江汉红, 等. 电磁发射用多级混合储能充电方式对比[J]. 强激光与粒子束, 2015, 27:075005 doi: 10.11884/HPLPB201527.075005

    Li Chao, Lu Junyong, Jiang Hanhong, et al. Comparison of charging methods of multilevel hybrid energy storage for electromagnetic launch[J]. High Power Laser and Particle Beams, 2015, 27: 075005 doi: 10.11884/HPLPB201527.075005
    [5] 穆泽渊, 张军, 黄莹倍. 基于IGCT的单级磁阻型线圈发射器的效率研究[J]. 弹道学报, 2020, 32(3):91-96 doi: 10.12115/j.issn.1004-499X(2020)03-017

    Mu Zeyuan, Zhang Jun, Huang Yingbei. Study on efficiency of single-stage reluctance coil launcher based on IGCT[J]. Journal of Ballistics, 2020, 32(3): 91-96 doi: 10.12115/j.issn.1004-499X(2020)03-017
    [6] 孙鹏, 雷彬, 李治源, 等. 电磁发射复合型结构拦截弹的3维电磁场有限元建模与仿真[J]. 强激光与粒子束, 2011, 23(10):2811-2816 doi: 10.3788/HPLPB20112310.2811

    Sun Peng, Lei Bin, Li Zhiyuan, et al. Finite element analysis on 3-D electromagnetic field of electromagnetic launching composite intercepting projectile[J]. High Power Laser and Particle Beams, 2011, 23(10): 2811-2816 doi: 10.3788/HPLPB20112310.2811
    [7] 徐麟, 张军, 董健年. 一种单兵电磁武器发射过程仿真研究[J]. 弹道学报, 2017, 29(3):92-96 doi: 10.3969/j.issn.1004-499X.2017.03.016

    Xu Lin, Zhang Jun, Dong Jiannian. Simulation on launching process of individual electromagnetic weapon[J]. Journal of Ballistics, 2017, 29(3): 92-96 doi: 10.3969/j.issn.1004-499X.2017.03.016
    [8] 杨保成, 韩俊峰. 基于均匀试验法的电磁线圈发射关键参数优化[J/OL]. 北京航空航天大学学报, 2023: 1-8. https://doi.org/10.13700/j.bh.1001-5965.2023.0040

    Yang Baocheng, Han Junfeng. Optimization of key parameters of electromagnetic coil vertical launching based on uniform design method[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2023: 1-8. https://doi.org/10.13700/j.bh.1001-5965.2023.0040.
    [9] Kim S, Kim J. An electromagnetic circuit design to improve a multi-stage coil-gun’s energy conversion efficiency[J]. Applied Sciences, 2022, 12(18): 8942. doi: 10.3390/app12188942
    [10] Deng Huimin, Wang Yu, Lu Falong, et al. Optimization of reluctance accelerator efficiency by an improved discharging circuit[J]. Defence Technology, 2020, 16(3): 662-667. doi: 10.1016/j.dt.2019.08.013
    [11] Lu Mengkun, Zhang Junhong, Yi Xianglie. A reverse electromagnetic force suppression circuit and its control method for reluctance coil-gun[J]. IEEE Transactions on Plasma Science, 2023, 51(4): 1196-1203. doi: 10.1109/TPS.2023.3251966
    [12] Sovik G B, Halivni B, Evzelman M, et al. Electromagnetic propulsion system with rapid current discharge circuit for enhanced projectile acceleration[C]//Proceedings of the 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL). 2022: 1-6.
    [13] Zhao Jiaqi, Li Haitao, Zhao Bo, et al. An improved pulsed power supply circuit for reluctance electromagnetic launcher based on bridge-type capacitor circuit[J]. IEEE Transactions on Plasma Science, 2023, 51(5): 1351-1356. doi: 10.1109/TPS.2023.3265933
    [14] 王莹, 肖峰. 电炮原理[M]. 北京: 国防工业出版社, 1995

    Wang Ying, Xiao Feng. Principles of electomagnetic guns[M]. Beijing: National Defense Industry Press, 1995
    [15] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J]. 电工技术学报, 2021, 36(12):2560-2575

    Zhang Jun, Zhang Li, Cheng Yu. Review of the lifetime evaluation for the IGBT module[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2560-2575
    [16] 刘战伟, 陈喜民, 董杰, 等. 小型霍普金森杆多级电磁发射系统的优化[J]. 实验力学, 2015, 30(1):9-16 doi: 10.7520/1001-4888-14-103

    Liu Zhanwei, Chen Ximin, Dong Jie, et al. The optimization of multistage electromagnetic launching system of Mini-SHB[J]. Journal of Experimental Mechanics, 2015, 30(1): 9-16 doi: 10.7520/1001-4888-14-103
    [17] Li Z Y, Shen Y L, Li H R, et al. Study of the influence of electrical parameters on launch performance of projectile from the single-stage reluctance coil launcher[J]. Journal of Physics: Conference Series, 2020, 1507: 082035. doi: 10.1088/1742-6596/1507/8/082035
    [18] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22):4795-4808

    He Dongxin, Zhang Tao, Chen Xiaoguang, et al. Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808
    [19] Daldaban F, Sari V. The optimization of a projectile from a three-coil reluctance launcher[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24(4): 2771-2788.
    [20] Daldaban F, Sarı V. Bir relüktans firlaticinin sonlu elemanlar yöntemi̇ i̇le i̇ncelenmesi̇[J]. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2015, 30(4): 605-614.

    Daldaban F, Sarı V. Bir relüktans firlaticinin sonlu elemanlar yöntemi̇ i̇le i̇ncelenmesi̇[J]. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2015, 30(4): 605-614. (Daldaban F, Sari V. Analysis of a reluctance launcher by finite elements method[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2015, 30(4): 605-614
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  70
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-14
  • 修回日期:  2024-06-18
  • 录用日期:  2024-06-18
  • 网络出版日期:  2024-07-05
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回