留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体实验中脉冲强磁场设备产生的电磁干扰和屏蔽方法

王金灿 张振弛 王志 唐桧波 况龙钰 胡广月

王金灿, 张振弛, 王志, 等. 激光等离子体实验中脉冲强磁场设备产生的电磁干扰和屏蔽方法[J]. 强激光与粒子束, 2024, 36: 105001. doi: 10.11884/HPLPB202436.240136
引用本文: 王金灿, 张振弛, 王志, 等. 激光等离子体实验中脉冲强磁场设备产生的电磁干扰和屏蔽方法[J]. 强激光与粒子束, 2024, 36: 105001. doi: 10.11884/HPLPB202436.240136
Wang Jincan, Zhang Zhenchi, Wang Zhi, et al. Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments[J]. High Power Laser and Particle Beams, 2024, 36: 105001. doi: 10.11884/HPLPB202436.240136
Citation: Wang Jincan, Zhang Zhenchi, Wang Zhi, et al. Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments[J]. High Power Laser and Particle Beams, 2024, 36: 105001. doi: 10.11884/HPLPB202436.240136

激光等离子体实验中脉冲强磁场设备产生的电磁干扰和屏蔽方法

doi: 10.11884/HPLPB202436.240136
基金项目: 国家自然科学基金项目(12175230, 11775223, 12205298);中国科学院战略先导专项项目(XDB16)
详细信息
    作者简介:

    王金灿,1912214553@qq.com

    通讯作者:

    唐桧波,tanghb@ustc.edu.cn

    况龙钰, kuangly0402@sina.com

    胡广月,gyhu@ustc.edu.cn

  • 中图分类号: TN788

Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments

  • 摘要: 脉冲强磁场在高功率激光与物质相互作用领域有着重要的作用。报导了用于激光等离子体实验的脉冲强磁场设备产生的电磁干扰的空间和频谱分布特征以及屏蔽方法的实验结果。发现电磁干扰来自于脉冲强磁场设备的放电主回路、充电和接地的次级回路。这些电磁干扰主要通过电容性耦合进入真空靶室、进而通过传导型耦合途径从靶室进入电子设备,或通过充电线和接地线进入电网或弱电电缆、最终进入电子设备,部分电磁辐射通过自由空间传输方式耦合进电缆和电子设备。通过断开传导型耦合路径和屏蔽自由空间电磁辐射等途径来消弱电磁干扰,对比实验发现这些措施对抑制电磁干扰有明显的效果。这些结果可以应用于强磁场调控激光等离子体的实验研究。
  • 图  1  脉冲强磁场设备结构示意图

    Figure  1.  Schematic diagram of the structure of the pulsed intense magnetic field device

    图  2  脉冲强磁场设备的三维结构

    Figure  2.  Three dimension structure of pulsed intense magnetic field device

    图  3  电磁干扰测量的实验分布图

    Figure  3.  Experimental setup of electromagnetic pulses measurement

    图  4  放电回路上罗氏线圈测量的放电电流的时间波形和频谱

    Figure  4.  Temporal waveform and frequency spectrum of discharge electric current measured by Rogowski coil

    图  5  高压探针在高压地上测量的电压时间波形和频谱

    Figure  5.  Temporal waveform of voltage and frequency spectra measured at high-voltage ground connection

    图  6  测量光学平台的电磁干扰时,线缆经过地下室上方与不经过放置了高压电源和高压地的地下室上方时测量的电信号及其频谱图

    Figure  6.  Electromagnetic pulses temporal waveform and frequency spectra when the cables passing above the room in basement,or not

    图  7  在靶室上测量的电压时间波形和对应的频谱

    Figure  7.  Temporal waveform of voltage and frequency spectrum measured on the vacuum target chamber

    图  8  (a)靶室上测量电磁干扰的位置示意图,(b)靶室上不同位置的电压抖动幅度与相对于脉冲磁场设备安装法兰距离的关系

    Figure  8.  (a) Schematic diagram of measurement points on vacuum target chamber, (b) the relationship between the amplitude of voltage variation on the vacuum target chamber and the distance from the flange that places the pulsed magnetic field device

    图  9  不同光学平台和接地线上的电磁干扰信号和其频谱图

    Figure  9.  Electromagnetic pulses’ temporal waveform and frequency spectra measured at various optical platforms

    图  10  光学平台不同位置和低压地线上测量的电磁干扰信号的电压幅值

    Figure  10.  Voltage amplitude of electromagnetic pulses measured at different position on optical platforms and low-voltage ground connection

    图  11  不同测量位置的电磁干扰峰值电压和频谱分布

    Figure  11.  Voltage amplitude vs detection position and frequency spectra vs detection position

    图  12  电磁干扰的消减措施

    Figure  12.  Mitigation approaches of electromagnetic pulses

    图  13  金属网制作的屏蔽罩对自由空间电磁干扰的屏蔽效果

    Figure  13.  Mitigation of free-space electromagnetic pulses via shielding shell made by copper metal wire cloth

    图  14  给示波器供电的UPS电源与电网物理断开对电磁干扰的抑制效果

    Figure  14.  Mitigation of electromagnetic pulses via disconnecting the uninterruptible power supply (UPS) of oscilloscope from the power supply grid

    图  15  高压电源控制电路接单独的低压地对电磁干扰的抑制效果

    Figure  15.  Mitigation of electromagnetic pulses via using independent low-voltage grounding connection for high-voltage power supply

    图  16  屏蔽柜对抑制电磁干扰的效果

    Figure  16.  Mitigation of electromagnetic pulses via shielded cabinet

    表  1  不同位置测量的电磁干扰的频谱与幅值

    Table  1.   Spectrum and amplitude of electromagnetic pulse measured at different positions

    amplitude frequency (<1 MHz) frequency (1~10 MHz) frequency (10~25 MHz)
    main discharge
    circuit (source)
    33 kA 0.14 MHz 0.5 MHz
    high-voltage ground
    connection (source)
    1.7 kV 0.14 MHz 0.5 MHz 5 MHz 18.4 MHz 22 MHz
    basement free space
    electromagnetic
    pulse (source)
    13MHz
    target chamber 46~90 V 0.14 MHz
    conductive
    0.5 MHz
    conductive
    2.5 MHz
    conductive
    3.7 MHz
    conductive
    5 MHz
    conductive
    14 MHz
    conductive
    west optical platform 20~30 V 0.14 MHz
    conductive
    0.5 MHz
    conductive
    2.5 MHz
    conductive
    north optical platform 15~22 V 0.14 MHz
    conductive
    0.5 MHz
    conductive
    2.5 MHz
    conductive
    14 MHz
    conductive
    small optical platform 10~18 V 5 MHz
    radiation
    18.4 MHz
    radiation
    22 MHz
    radiation
    south optical platform 5~12 V 0.14 MHz
    conductive
    0.5 MHz
    conductive
    2.5 MHz
    conductive
    laser platform 3~5 V 0.5 MHz
    conductive
    2.5 MHz
    conductive
    low-voltage ground
    connection
    4~10 V 0.14 MHz
    conductive
    radiation
    0.5 MHz
    conductive
    radiation
    下载: 导出CSV
  • [1] Chang P Y, Fiksel G, Hohenberger M, et al. Fusion yield enhancement in magnetized laser-driven implosions[J]. Physical Review Letters, 2011, 107: 035006. doi: 10.1103/PhysRevLett.107.035006
    [2] Gong Tao, Zheng Jian, Li Zhichao, et al. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields[J]. Physics of Plasmas, 2015, 22: 092706. doi: 10.1063/1.4931077
    [3] Schaeffer D B, Fox W, Haberberger D, et al. Generation and evolution of high-Mach-number laser-driven magnetized collisionless shocks in the laboratory[J]. Physical Review Letters, 2017, 119: 025001. doi: 10.1103/PhysRevLett.119.025001
    [4] Burris-Mog T, Harres K, Nürnberg F, et al. Laser accelerated protons captured and transported by a pulse power solenoid[J]. Physical Review Accelerators and Beams, 2011, 14: 121301. doi: 10.1103/PhysRevSTAB.14.121301
    [5] Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004
    [6] Fiksel G, Agliata A, Barnak D, et al. Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility[J]. Review of Scientific Instruments, 2015, 86: 016105. doi: 10.1063/1.4905625
    [7] Albertazzi B, Béard J, Ciardi A, et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields[J]. Review of Scientific Instruments, 2013, 84: 043505. doi: 10.1063/1.4795551
    [8] Wang Yulin, Hu Guangyue, Hu Peng, et al. Compact pulsed intense magnetic field generator for Shenguang-II upgrade laser facility[J]. Journal of Instrumentation, 2019, 14: P09024. doi: 10.1088/1748-0221/14/09/P09024
    [9] Hu Peng, Zhao Jiayi, Wang Jincan, et al. Upgraded pulsed magnetic field generator for Shenguang-II laser facility toward 30 T[J]. Journal of Instrumentation, 2022, 17: P07036. doi: 10.1088/1748-0221/17/07/P07036
    [10] Hu Guangyue, Liang Yihan, Song Falun, et al. A 7 T pulsed magnetic field generator for magnetized laser plasma experiments[J]. Plasma Science and Technology, 2015, 17(2): 134-140. doi: 10.1088/1009-0630/17/2/07
    [11] Wang Yulin, Hu Guangyue, Hu Peng, et al. Portable pulsed magnetic field generator for magnetized laser plasma experiments in low vacuum environments[J]. Review of Scientific Instruments, 2019, 90: 075108. doi: 10.1063/1.5095541
    [12] Hu Peng, Hu Guangyue, Wang Yulin, et al. Pulsed magnetic field device for laser plasma experiments at Shenguang-Ⅱ laser facility[J]. Review of Scientific Instruments, 2020, 91: 014703. doi: 10.1063/1.5139613
    [13] Yang Ming, Li Tingshuai, Wang Chuanke, et al. Characterization of electromagnetic pulses via arrays on ShenGuang-III laser facility laser[J]. Chinese Optics Letters, 2016, 14: 101402. doi: 10.3788/COL201614.101402
    [14] Xu Yilin, Li Dongyu, Xia Yadong, et al. Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA[J]. Chinese Physics B, 2022, 31: 025205. doi: 10.1088/1674-1056/ac3735
    [15] Zhang Guangjin, Xia Yadong, Yi Tao, et al. Generation of electromagnetic impulse from laser irradiating targets and its propagation in the laser facility[J]. Fusion Engineering and Design, 2019, 141: 21-24. doi: 10.1016/j.fusengdes.2019.02.059
    [16] Yang Yu, Guo Xiaodong, Li Zihao, et al. Intense electromagnetic pulses generated from kJ-laser interacting with hohlraum targets[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2027-2036. doi: 10.1109/TNS.2022.3187569
    [17] Yang Ming, Yang Yongmei, Li Tingshuai, et al. Electromagnetic radiations from laser interaction with gas-filled hohlraum[J]. Laser Physics Letters, 2018, 15: 016101. doi: 10.1088/1612-202X/aa94ec
    [18] Yang Yongmei, Yi Tao, Yang Ming, et al. Effect of target size on electromagnetic pulses generation from laser radiation with targets[J]. Laser Physics, 2019, 29: 016003. doi: 10.1088/1555-6611/aaf22a
    [19] Xia Yadong, Zhang Feng, Cai Hongbo, et al. Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target[J]. Matter and Radiation at Extremes, 2020, 5: 017401. doi: 10.1063/1.5114663
    [20] He Q Y, Deng Z G, Meng L B, et al. Generation and regulation of electromagnetic pulses induced by hybrid laser pulses interacting with solid targets[J]. Nuclear Fusion, 2022, 62: 066006. doi: 10.1088/1741-4326/ac54cf
    [21] Xia Yadong, Li Dongyu, Zhang Siyuan, et al. Enhancing electromagnetic radiations by a pre-ablation laser during laser interaction with solid target[J]. Physics of Plasmas, 2020, 27: 032705. doi: 10.1063/1.5140585
    [22] He Qiangyou, Kang Ning, Ren Lei, et al. Spatial and temporal evolution of electromagnetic pulses generated at Shenguang-II series laser facilities[J]. Plasma Science and Technology, 2021, 23: 115202. doi: 10.1088/2058-6272/ac21b7
    [23] Yang Jinwen, Li Tingshuai, Yi Tao, et al. Electromagnetic pulses generated from laser target interactions at Shenguang II laser facility[J]. Plasma Science and Technology, 2016, 18(10): 1044-1048. doi: 10.1088/1009-0630/18/10/13
    [24] Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13
    [25] 易涛, 景峰, 王新彬, 等. 神光Ⅲ装置电磁脉冲测量[J]. 安全与电磁兼容, 2017(6):83-85

    Yi Tao, Jing Feng, Wang Xinbin, et al. Electromagnetic pulse measurement at ShenGuang III laser facility[J]. Safety & EMC, 2017(6): 83-85
    [26] 易涛, 郑万国, 江少恩. 高功率激光装置电磁兼容设计[J]. 安全与电磁兼容, 2019(1):89-92

    Yi Tao, Zheng Wanguo, Jiang Shaoen. EMC design of high power laser facility experiments[J]. Safety & EMC, 2019(1): 89-92
    [27] 何勇, 陈德怀, 林福昌, 等. 强激光脉冲电源电磁干扰的仿真与测试[J]. 强激光与粒子束, 2005, 17(6):921-924

    He Yong, Chen Dehuai, Lin Fuchang, et al. Simulation and measurement of electromagnetic interference in a pulsed supply of high power laser[J]. High Power Laser and Particle Beams, 2005, 17(6): 921-924
    [28] 杨正华, 刘慎业, 肖绍球, 等. 神光Ⅲ原型装置靶室电磁干扰测量与分析[J]. 核电子学与探测技术, 2015, 35(2):210-214

    Yang Zhenghua, Liu Shenye, Xiao Shaoqiu, et al. Research of electric field pulse of Shenguang Ⅲ prototype laser facility target chamber[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 210-214
    [29] 邱永峰. 高功率脉冲驱动源控制系统及电磁兼容性研究[D]. 长沙: 国防科技大学, 2018: 28-43

    Qiu Yongfeng. Investigation of control system and EMC based on high power pulse generator[D]. Changsha: National University of Defense Technology, 2018: 28-43
    [30] 罗晓珊. 强流脉冲环境下的辐射干扰及抑制措施研究[D]. 武汉: 华中科技大学, 2014: 1-10

    Luo Xiaoshan. The research on the radiation interference and suppression measures in intense pulse current environment[D]. Wuhan: Huazhong University of Science and Technology, 2014: 1-10
    [31] 路宏敏, 赵晓凡, 谭康伯, 等. 工程电磁兼容[M]. 3版. 西安: 西安电子科技大学出版社, 2019

    Lu Hongmin, Zhao Xiaofan, Tan Kangbo, et al. Engineering electromagnetic compatibility[M]. 3rd ed. Xi’an: Xidian University Press, 2019
    [32] 赵佳羿, 胡鹏, 王雨林, 等. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈[J]. 物理学报, 2021, 70:165202 doi: 10.7498/aps.70.20210441

    Zhao Jiayi, Hu Peng, Wang Yulin, et al. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil[J]. Acta Physica Sinica, 2021, 70: 165202 doi: 10.7498/aps.70.20210441
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  39
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-09-05
  • 录用日期:  2024-09-05
  • 网络出版日期:  2024-09-13
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回