留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球墨铸铁电极气体开关特性研究

尚蔚 苏建仓 曾搏 李锐 王刚 程杰 李永东 高明珠 喻斌雄

尚蔚, 苏建仓, 曾搏, 等. 球墨铸铁电极气体开关特性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240141
引用本文: 尚蔚, 苏建仓, 曾搏, 等. 球墨铸铁电极气体开关特性研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240141
Shang Wei, Su Jiancang, Zeng Bo, et al. Research on spherical graphite cast iron electrode based gas switch[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240141
Citation: Shang Wei, Su Jiancang, Zeng Bo, et al. Research on spherical graphite cast iron electrode based gas switch[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240141

球墨铸铁电极气体开关特性研究

doi: 10.11884/HPLPB202436.240141
详细信息
    作者简介:

    尚 蔚,shangwei@nint.ac.cn

    通讯作者:

    苏建仓,sujiancang@nint.ac.cn

  • 中图分类号: O461.1

Research on spherical graphite cast iron electrode based gas switch

  • 摘要: 高功率容量的气体开关是国内外大型脉冲功率装置的首选,但因气体放电随机性导致的自击穿电压抖动一直以来是脉冲功率装置的瓶颈问题。电极是影响气体开关稳定性和寿命的关键,开关设计总要面临低抖动和长寿命之间的取舍,提出一种兼顾低抖动、长寿命特性的球墨铸铁气体开关。基于对球墨铸铁材料的特性分析,提出球墨均布于电极有利于提高气体开关击穿稳定性的机制,且球状石墨均布于整个电极体内,相比表面结构,具有长寿命的原生优势。设计开展了单级开关稳定性测试实验,结果表明球墨铸铁电极可将传统电极结构3%~4%的重频自击穿抖动有效降低至2.5%。最终利用低抖动球墨电极,设计了5级1 MV等自击穿概率型全密封气体开关,开关抖动进一步降低至2%以下。在测试电压范围960~980 kV,放电电流约9 kA,无维护条件下开展了开关30万脉冲寿命考核,自击穿抖动维持在2%以下,最优达1.7%。开关导通前沿小于5 ns,传输效率大于90%。此结果展现了球墨铸铁作为气体开关电极的应用潜力。
  • 图  1  电极材料扫描电镜图

    Figure  1.  SEM image of QT500-spherical graphite cast iron and 316L stainless steel

    图  2  阴极真空场致电子发射图像

    Figure  2.  Field emission electron image of QT500-spherical graphite cast iron and 316L stainless steel

    图  3  测试结构电场分布

    Figure  3.  Electric field diagram of tested gas switch

    图  4  单间隙击穿电压累积概率分布(SF6, 0.9 MPa)

    Figure  4.  Cumulative distribution function of gas discharge for typical gas gap (SF6, 0.9 MPa)

    图  5  典型放电间隙击穿抖动对比(SF6, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 MPa)

    Figure  5.  Comparison of breakdown jitter along typical gas gaps (SF6, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 MPa)

    图  6  真空场致电子发射稳定性测试

    Figure  6.  Field emission electron stability test under vacuum

    图  7  N2开关单次自击穿稳定性测试.

    Figure  7.  Self-breakdown voltage test of N2 gas switch

    图  8  多级等自击穿概率球墨铸铁开关场强分布(V=−1 MV)

    Figure  8.  Electric field distribution of spherical graphite cast iron equal breakdown probability gas switch (V=−1 MV)

    图  9  多级球墨铸铁开关的静电场模拟

    Figure  9.  Electrostatic simulation for multi-stage spherical graphite cast iron gas switch

    图  10  Tesla型驱动源气体主开关工作典型波形

    Figure  10.  Typical waveform of gas switch for Tesla pulse generator

    图  11  球墨铸铁开关30万脉冲寿命考核的电性能演变趋势

    Figure  11.  Evolution of breakdown voltage and jitter for spherical graphite cast iron gas switch under 300 000 pulses test

    表  1  QT500球墨铸铁材料与316L不锈钢材料性质对比

    Table  1.   Comparison of material properties between spherical graphite cast iron and stainless steel

    material mass fraction/% tensile
    strength/MPa
    yield
    strength/MPa
    thermal conductivity/
    (W∙m−1∙K−1)
    melting
    point/℃
    hardness/HB metallographic
    structure
    QT500C: 3.55~3.85;
    Si: 2.34~2.86
    Mn,S,P,Mg: 0.02~0.04
    RE: 0.03~0.05
    ≥500≥32035.712001300170~230austenitic stainless steel
    316LC: ≤0.03; Si: ≤1.00;
    Mn: ≤2.00; S: ≤0.03;
    P: ≤0.045; Mo: 2.00~3.00
    ≥480≥17716.313751450≤187ferrite+pearlite
    下载: 导出CSV

    表  2  四个实验组的开关结构

    Table  2.   Basic structure of 4 experimental groups

    experiment group electrode structure electric field enhancement f cathode material anode material
    group 1 annular spherical 1.1 316L 316L
    group 2 blade-plane 3.6 316L 316L
    group 3 annular spherical 1.1 QT500 QT500
    group 4 annular spherical 1.1 QT500 316L
    下载: 导出CSV
  • [1] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [3] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [4] Martin T H, Guenther A H, Kristiansen M. J. C. Martin on pulsed power[M]. New York: Springer, 1996.
    [5] Lehr J, Ron P. Foundations of pulsed power technology[M]. New York: Wiley-IEEE Press, 2017.
    [6] Jones Jr C H, Crewson W F J, Naff J T, et al. An analytical model for the high voltage rope switch[R]. Pulsar Associates Switching Note 19, 1973.
    [7] Maenchen J, Lehr J M, Warne L K, et al. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report[R]. SAND2007-0217, 2007.
    [8] Beveridge J R, MacGregor S J, Given M J, et al. A corona-stabilised plasma closing switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 948-955. doi: 10.1109/TDEI.2009.5211838
    [9] Gao Pengcheng, Su Jiancang, Zeng Bo, et al. A low-jitter self-break repetitive multi-stage gas switch[J]. Review of Scientific Instruments, 2017, 88: 024705. doi: 10.1063/1.4973420
    [10] 曾搏, 苏建仓, 等. 一种陶瓷封装V/N触发多级气体开关[C]//第十一届全国高功率微波会议. 2017

    Zeng Bo, Su Jiancang, et al. A ceramic package V/N triggers a multi-stage gas switch[C]//The 11th National High Power Microwave Conference. 2017
    [11] Su Jiancang, Zeng Bo, Gao Pengcheng, et al. A voltage-division-type low-jitter self-triggered repetition-rate switch[J]. Review of Scientific Instruments, 2016, 87: 105118. doi: 10.1063/1.4963659
    [12] Shang Wei, Su Jiancang, Zeng Bo, et al. A 1-MV low-jitter high-reliability multi-stage equal breakdown probability gas switch[J]. Physica Scripta, 2023, 98: 015013. doi: 10.1088/1402-4896/aca846
    [13] 罗维熙, 丛培天, 孙铁平, 等. 电极材料对气体火花开关静态性能的影响[J]. 强激光与粒子束, 2016, 28:015022 doi: 10.11884/HPLPB201628.015022

    Luo Weixi, Cong Peitian, Sun Tieping, et al. Influence of electrode materials on static performance of gas spark switch[J]. High Power Laser and Particle Beams, 2016, 28: 015022 doi: 10.11884/HPLPB201628.015022
    [14] 戴宏宇, 沈昊, 李黎. 石墨电极气体开关中等离子体弧区碳氧反应效率研究[J]. 强激光与粒子束, 2021, 33:065015 doi: 10.11884/HPLPB202133.210084

    Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015 doi: 10.11884/HPLPB202133.210084
    [15] Zeng Fanzheng, Li Song, Zhang Quancai, et al. Investigation on a self-breakdown repetitive gap switch based on the graphite electrodes with TiC surface modification[J]. IEEE Transactions on Plasma Science, 2022, 50(3): 709-714. doi: 10.1109/TPS.2022.3148320
    [16] Wang Gang, Su Jiancang, Zhang Xibo, et al. Impulse-breakdown characteristics of a high-power gas switch based on graphene cathode[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4567-4571. doi: 10.1109/TPS.2019.2919350
    [17] 孙钧. 介质掺杂爆炸发射阴极研究[D]. 北京: 清华大学, 2006

    Sun Jun. Study on dielectric doped explosion emission cathode[D]. Beijing: Tsinghua University, 2006
    [18] 孙钧, 刘国治, 林郁正, 等. 阴极金属微凸起电场增强因子数值模拟[J]. 强激光与粒子束, 2005, 17(8):1183-1186

    Sun Jun, Liu Guozhi, Lin Yuzheng, et al. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(8): 1183-1186
    [19] 吴平. 结构场增强爆炸发射阴极研究[D]. 北京: 清华大学, 2017

    Wu Ping. Research on explosive emission cathode with structural field enhancement[D]. Beijing: Tsinghua University, 2017
    [20] Wu Ping, Sun Jun. Emission current from a single micropoint of explosive emission cathode[J]. Physics of Plasmas, 2016, 23: 013111. doi: 10.1063/1.4940334
    [21] 吴德海. 球墨铸铁[M]. 北京: 中国水利水电出版社, 2006

    Wu Dehai. Spherical graphite cast iron[M]. Beijing: China Water Power Press, 2006
    [22] Meek J M. A theory of spark discharge[J]. Physical Review, 1940, 57(8): 722-728. doi: 10.1103/PhysRev.57.722
    [23] Raether H. Electron avalanches and breakdown in gases[M]. London: Butterworths, 1964.
    [24] Loeb L B. Fundamental processes of electrical discharge in gases[M]. New York: Wiley, 1939.
    [25] Li Yutai, Fu Yangyang, Liu Zhigang, et al. Observation of electron runaway in a tip-plane air gap under negative nanosecond pulse voltage by PIC/MCC simulation[J]. Plasma Sources Science and Technology, 2022, 31: 045027. doi: 10.1088/1361-6595/ac5ec9
    [26] Kunhardt E E, Tzeng Y. Development of an electron avalanche and its transition into streamers[J]. Physical Review A, 1988, 38(3): 1410-1421. doi: 10.1103/PhysRevA.38.1410
    [27] Tan Nongchao, Wu Ping, Hua Ye, et al. Mechanism analysis of field electron emission of titanium[J]. Physica Scripta, 2023, 98: 045005. doi: 10.1088/1402-4896/acbe78
    [28] Tan Nongchao, Wu Ping, Sun Jun, et al. Experimental study on the influence of grain boundary on breakdown in relativistic backward wave oscillator[J]. Physica Scripta, 2023, 98: 105535. doi: 10.1088/1402-4896/acfac7
    [29] Wu Yue, Su Jiancang, Qiu Xudong, et al. Review of metallic microprotrusion model and microdielectrics model in vacuum[J]. IEEE Transactions on Plasma Science, 2023, 51(12): 3492-3499. doi: 10.1109/TPS.2023.3331849
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  36
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-27
  • 修回日期:  2024-08-27
  • 录用日期:  2024-08-27
  • 网络出版日期:  2024-09-03

目录

    /

    返回文章
    返回