留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中正极性丝状流注放电发展特性

温嘉烨 王亚桢 肖正光 王骏东 李元 张冠军

温嘉烨, 王亚桢, 肖正光, 等. 水中正极性丝状流注放电发展特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240143
引用本文: 温嘉烨, 王亚桢, 肖正光, 等. 水中正极性丝状流注放电发展特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240143
Wen Jiaye, Wang Yazhen, Xiao Zhengguang, et al. Propagation characteristics of positive filamentary streamer discharges in water[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240143
Citation: Wen Jiaye, Wang Yazhen, Xiao Zhengguang, et al. Propagation characteristics of positive filamentary streamer discharges in water[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240143

水中正极性丝状流注放电发展特性

doi: 10.11884/HPLPB202436.240143
基金项目: 国家自然科学基金项目(52242706)
详细信息
    作者简介:

    温嘉烨,wenjiaye@126.com

    通讯作者:

    李 元,liyuan8490@xjtu.edu.cn

  • 中图分类号: TM85

Propagation characteristics of positive filamentary streamer discharges in water

  • 摘要: 水中流注放电为击穿前放电通道起始与发展的关键过程,但由于涉及物理机制较为复杂且尚不明确,制约了水中放电应用效率的提升。探究了水中正极性丝状流注放电的模式转化特性、重燃特性与分叉特性,明确了通道界面沉积电荷与空间电荷分布对流注发展过程的影响。研究结果表明,水中正极性放电可分为第一类与第二类丝状流注,流注模式转化特性受气液界面电荷弛豫过程影响较大。当外施电压达到加速电压时,第一类流注迅速转化为第二类流注。第一类丝状流注通道内电离形成、熄灭及重燃过程与通道内部电场及气/液界面电荷密度关系密切。第二类丝状流注通道空间电荷分布受电压上升沿与电极表面结构影响较大。电压上升沿时间越长,主通道头部电荷密度与电场强度越低,通道发展速度随之降低。随电极表面微凸结构半径增大,流注分叉点位置将电极表面过渡为主通道根部。受主通道空间电荷分布影响,分支通道发展速度在微凸结构半径为5 μm时呈现先降后升趋势。
  • 图  1  水中放电光-电信号联合测量平台

    Figure  1.  Measurement platform of optical-electrical signals of underwater streamer discharge

    图  2  水中正极性第一类丝状流注发展过程

    Figure  2.  Development of positive primary streamer discharge in water

    图  3  水中正极性第二类丝状流注放电图像与波形

    Figure  3.  Waveforms and shadow images of secondary streamer in water

    图  4  水中正极性第二类丝状流注放电图像与波形

    Figure  4.  Waveforms and shadow images of secondary streamer in water

    图  5  水中第一类丝状流注的重燃过程

    Figure  5.  Reillumination process of primary streamer in water

    图  6  水中正极性流注发展速度随外施电压变化趋势

    Figure  6.  Varying trend of underwater positive streamer versus applied voltage

    图  7  针-板电极二维轴对称模型几何结构与网格剖分

    Figure  7.  Geometric structure and mesh generation of two-dimensional axisymmetric model of needle-to-plane electrode

    图  8  仿真模型外施电压波形

    Figure  8.  Waveforms of applied voltage in simulation model

    图  9  20 kV水中正极性第二类丝状流注发展阶段电场分布特性

    Figure  9.  Electric field distribution of 20 kV positive secondary streamer during propagation period

    图  10  不同电压上升沿条件下正极性第二类丝状流注发展特性

    Figure  10.  Development characteristics of positive secondary stream under different rising time of applied voltage

    图  11  不同电极表面微凸结构条件下正极性第二类丝状流注发展特性

    Figure  11.  Development characteristics of positive secondary streamer under the effect of micro-convex structure of electrode surface

    图  12  不同电极表面微凸结构条件下流注分支通道起始过程电场分布云图

    Figure  12.  Electric field distribution of streamer branching channel under different micro-convex structures of electrode surface

    图  13  不同电极表面微凸结构条件下流注分支通道速度随时间演化曲线

    Figure  13.  Varying curves of branching channel velocity versus time under different micro-convex structures of electrode surface

    表  1  水中流注放电仿真模型的主要物理参数

    Table  1.   Main physical parameters of underwater streamer discharge simulation model

    parameter symbol value[18-20]
    Planck constant h 6.63×10−34 J·s
    intermolecular distance a 3.1×10−10 m
    number density of ionizable molecules n0 3.3×1026 m−3
    ionization energy of water molecules Δ 4.0 eV
    effective electron mass m* 9.1×10−32 kg
    recombination rate of positive and negative ions Rpn 1×10−19 m3/s
    recombination rate of positive ions and electrons Rpe 1×10−19 m3/s
    mobility of positive ion μp 3.5×10−7 m2 /(V·s)
    mobility of negative ion μn 2×10−7 m2 /(V·s)
    mobility of electron μe 5×10−4 m2/(V·s)
    electron attachment time τa 200 ns
    vacuum permittivity ε0 8.85×10−12 F/m
    relative permittivity of water εr 81
    electron charge e 1.6×10−19 C
    下载: 导出CSV
  • [1] 李元, 郜晶, 朱光远, 等. 液相等离子体技术制备碳纳米材料的进展与趋势[J]. 中国电机工程学报, 2021, 41(8):2909-2918

    Li Yuan, Gao Jing, Zhu Guangyuan, et al. Advances and trends of carbon nanomaterial synthesis by liquid-plasma processing[J]. Proceedings of the CSEE, 2021, 41(8): 2909-2918
    [2] 朱太云, 张乔根, 杨兰均, 等. 水中脉冲放电产生过氧化氢及其影响因素[J]. 强激光与粒子束, 2010, 22(3):675-678 doi: 10.3788/HPLPB20102203.0675

    Zhu Taiyun, Zhang Qiaogen, Yang Lanjun, et al. Generation of hydrogen peroxide by pulse discharge in water and its affecting factors[J]. High Power Laser and Particle Beams, 2010, 22(3): 675-678 doi: 10.3788/HPLPB20102203.0675
    [3] 付荣耀, 孙鹞鸿, 刘坤, 等. 大水泥岩样的电脉冲压裂实验研究[J]. 强激光与粒子束, 2018, 30:045007

    Fu Rongyao, Sun Yaohong, Liu Kun, et al. Experimental study of fracturing under electric pulse for large cement sample[J]. High Power Laser and Particle Beams, 2018, 30: 045007
    [4] 严辉, 黄逸凡, 裴彦良, 等. 等离子体震源及在海洋勘探中的应用[J]. 高电压技术, 2012, 38(7):1711-1718

    Yan Hui, Huang Yifan, Pei Yanliang, et al. Plasma seismic source and its application in oceanic seismic exploration[J]. High Voltage Engineering, 2012, 38(7): 1711-1718
    [5] 韩若愚, 李柳霞, 钱盾, 等. 液体中金属丝电爆炸的研究现状与展望[J]. 高电压技术, 2021, 47(3):766-777

    Han Ruoyu, Li Liuxia, Qian Dun, et al. Exploding metal wires in liquids: current situation and prospects[J]. High Voltage Engineering, 2021, 47(3): 766-777
    [6] 李显东, 刘毅, 周古月, 等. 针–板电极下水中亚音速流注形态与发展过程[J]. 中国电机工程学报, 2018, 38(5):1562-1571

    Li Xiandong, Liu Yi, Zhou Guyue, et al. Morphology and development of underwater subsonic streamer under needle to plane electrodes[J]. Proceedings of the CSEE, 2018, 38(5): 1562-1571
    [7] 赵景林, 王志强, 王进君, 等. 基于Kriging模型的水中放电沉积能量优化分析[J]. 强激光与粒子束, 2023, 35:035005

    Zhao Jinglin, Wang Zhiqiang, Wang Jinjun, et al. Deposited energy optimization analysis of discharge in water based on Kriging model[J]. High Power Laser and Particle Beams, 2023, 35: 035005
    [8] 李元, 温嘉烨, 李林波, 等. 液体介质微/纳秒脉冲放电的特性与机理: 现状及进展[J]. 强激光与粒子束, 2021, 33:065001

    Li Yuan, Wen Jiaye, Li Linbo, et al. Characteristics and mechanisms of streamer discharge in liquids under micro/nano-second pulsed voltages: status and advances[J]. High Power Laser and Particle Beams, 2021, 33: 065001
    [9] 温嘉烨, 李元, 倪正全, 等. 水中负极性灌木状放电特性研究[J]. 中国电机工程学报, 2021, 41(17):6108-6115

    Wen Jiaye, Li Yuan, Ni Zhengquan, et al. Study on characteristics of negative bushy discharges in water[J]. Proceedings of the CSEE, 2021, 41(17): 6108-6115
    [10] Kumagai R, Kanazawa S, Ohtani K, et al. Propagation and branching process of negative streamers in water[J]. Journal of Applied Physics, 2018, 124: 163301. doi: 10.1063/1.5025376
    [11] Lesaint O. Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties[J]. Journal of Physics D: Applied Physics, 2016, 49: 144001. doi: 10.1088/0022-3727/49/14/144001
    [12] 孙冰. 液相放电等离子体及其应用[M]. 北京: 科学出版社, 2013

    Sun Bing. Discharge plasma in liquid and its applications[M]. Beijing: Science Press, 2013
    [13] Li Yuan, Wen Jiaye, Jiang Qiuyu, et al. Influences of discharge modes and gas bubbling conditions on E. coli sterilization by pulsed underwater discharge treatments[J]. AIP Advances, 2020, 10: 025207. doi: 10.1063/1.5126378
    [14] Fujita H, Kanazawa S, Ohtani K, et al. Initiation process and propagation mechanism of positive streamer discharge in water[J]. Journal of Applied Physics, 2014, 116: 213301. doi: 10.1063/1.4902862
    [15] Wen Jiaye, Li Yuan, Li Linbo, et al. Experimental observations and interpretations of bubble-induced discharges under microsecond pulsed voltages in water[J]. Journal of Physics D: Applied Physics, 2020, 53: 425208. doi: 10.1088/1361-6463/ab9f67
    [16] Fujita H, Kanazawa S, Ohtani K, et al. Fast propagation of an underwater secondary streamer by the appearance of a continuous component in the discharge current[J]. Europhysics Letters, 2014, 105: 15003. doi: 10.1209/0295-5075/105/15003
    [17] 王芝, 韩若愚, 李显东, 等. 水中针-板结构小能量脉冲火花放电特性[J]. 强激光与粒子束, 2022, 34:095006

    Wang Zhi, Han Ruoyu, Li Xiandong, et al. Low-energy pulsed spark discharge characteristics of pin-plate structure in water[J]. High Power Laser and Particle Beams, 2022, 34: 095006
    [18] Jadidian J, Zahn M, Lavesson N, et al. Stochastic and deterministic causes of streamer branching in liquid dielectrics[J]. Journal of Applied Physics, 2013, 114: 063301. doi: 10.1063/1.4816091
    [19] Qian J, Joshi R P, Schamiloglu E, et al. Analysis of polarity effects in the electrical breakdown of liquids[J]. Journal of Physics D: Applied Physics, 2006, 39(2): 359-369. doi: 10.1088/0022-3727/39/2/018
    [20] Aghdam A C, Farouk T. Multiphysics simulation of the initial stage of plasma discharge formation in liquids[J]. Plasma Sources Science and Technology, 2020, 29: 025011. doi: 10.1088/1361-6595/ab51e3
    [21] Top T V, Lesaint A. Streamer initiation in mineral oil. Part II: influence of a metallic protrusion on a flat electrode[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(1): 92-96. doi: 10.1109/94.983891
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  40
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-06-28
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-15

目录

    /

    返回文章
    返回