留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TM03模式的V波段同轴渡越时间振荡器设计

曾繁博 张建德 贺军涛 令钧溥

曾繁博, 张建德, 贺军涛, 等. 基于TM03模式的V波段同轴渡越时间振荡器设计[J]. 强激光与粒子束, 2024, 36: 093002. doi: 10.11884/HPLPB202436.240145
引用本文: 曾繁博, 张建德, 贺军涛, 等. 基于TM03模式的V波段同轴渡越时间振荡器设计[J]. 强激光与粒子束, 2024, 36: 093002. doi: 10.11884/HPLPB202436.240145
Zeng Fanbo, Zhang Jiande, He Juntao, et al. Design of V-band coaxial transit time oscillator with TM03 mode[J]. High Power Laser and Particle Beams, 2024, 36: 093002. doi: 10.11884/HPLPB202436.240145
Citation: Zeng Fanbo, Zhang Jiande, He Juntao, et al. Design of V-band coaxial transit time oscillator with TM03 mode[J]. High Power Laser and Particle Beams, 2024, 36: 093002. doi: 10.11884/HPLPB202436.240145

基于TM03模式的V波段同轴渡越时间振荡器设计

doi: 10.11884/HPLPB202436.240145
基金项目: 国家自然科学基金项目(12345678); 国家高技术发展计划项目
详细信息
    作者简介:

    曾繁博,18482038706@163.com

    通讯作者:

    令钧溥,lingjunpu@163.com

  • 中图分类号: TN752

Design of V-band coaxial transit time oscillator with TM03 mode

  • 摘要: 随着高功率微波源频率的提升,腔体尺寸会随着电磁波波长的缩短而减小,从而导致器件功率容量不足,增大了射频击穿、脉冲缩短的风险。为了提升高频器件的功率容量,提出了一种基于TM03模式的低表面场强V波段同轴渡越时间振荡器,通过引入TM03模式的方式在极高频下拓宽腔体的横向尺寸,从而降低表面场强,提升功率容量。为了激励TM03模式并使之成为器件主要工作模式,计算了束波互作用结构的色散曲线及耦合阻抗,通过腔体设计使TM03模式的相速度与电子速度同步并发生换能,从而获得较低的群速度以及较高的耦合阻抗,最终成功在慢波结构中建立起了TM03模式电磁场。随后的粒子模拟仿真表明,在二极管电压400 kV、电流5 kA的条件下,输出微波功率达440 MW,频率为62.25 GHz,转换效率为22%,最大表面场强为1.6 MV/cm。
  • 图  1  TM03模式V波段同轴渡越时间振荡器结构

    Figure  1.  Geometric structure of V-band coaxial TTO with TM03 mode

    图  2  慢波结构示意图

    Figure  2.  Geometric structure of slow wave structure

    图  3  慢波结构色散曲线

    Figure  3.  Dispersion cure of slow wave structure

    图  4  慢波结构中微波群速度

    Figure  4.  Group velocity of slow wave structure

    图  5  耦合阻抗

    Figure  5.  Coupling impedance

    图  6  输出微波功率

    Figure  6.  Output microwave power

    图  7  频谱图

    Figure  7.  Frequency spectrum

    图  8  TM03模式表面最大场强

    Figure  8.  Maximum electric field of surface with TM03 mode

    图  9  TM02模式表面最大场强

    Figure  9.  Maximum electric field of surface with TM02 mode

    图  10  伏安特性曲线

    Figure  10.  Volt-ampere characteristic curve

    图  11  输出功率随电压、导引磁场及阴阳极间距的变化趋势

    Figure  11.  Dependence of output power on voltage, magnetic field and distance between anode and diode

    表  1  多周期慢波结构几何结构参数

    Table  1.   Parameters of slow wave structure (unit: mm)

    Rout w dt h N Rin(TM01) Rin(TM02) Rin(TM03)
    30.0 1.6 1.4 3.7 14 27.6 24.4 22.9
    下载: 导出CSV

    表  2  轴向表面场强大小

    Table  2.   Axial surface electric field of TM modes

    mode electric field/(V·m−1)
    TM01 0.41
    TM02 0.27
    TM03 0.19
    下载: 导出CSV
  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 2nd ed. Boca Raton: CRC Press, 2007.
    [2] Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter and Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [3] 贺军涛. 新型渡越时间振荡器的研究[D]. 长沙: 国防科技大学, 2004

    He Juntao. Investigation on novel transit-time oscillators[D]. Changsha: National University of Defense Technology, 2004
    [4] 曹亦兵. 基于渡越辐射新型高功率微波源的研究[D]. 长沙: 国防科技大学, 2012

    Cao Yibing. Investigation of a novel high-power microwave source based on transition radiation effect[D]. Changsha: National University of Defense Technology, 2012
    [5] 令钧溥. Ku波段低磁场同轴渡越时间振荡器的研究[D]. 长沙: 国防科技大学, 2014

    Ling Junpu. Investigation of a Ku-band coaxial transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2014
    [6] 宋莉莉. Ka波段高功率同轴渡越时间振荡器的研究[D]. 长沙: 国防科技大学, 2018

    Song Lili. A Ka-band high power coaxial transit-time oscillator[D]. Changsha: National University of Defense Technology, 2018
    [7] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
    [8] Benford J, Swegle J A, Schamiloglu E. 高功率微波[M]. 江伟华, 张驰, 译. 2版. 北京: 国防工业出版社, 2009

    Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. Jiang Weihua, Zhang Chi, trans. 2nd ed. Beijing: National Defense Industry Press, 2009
    [9] Miller R B. 强流带电粒子束物理学导论[M]. 刘锡三, 张兰芝, 吴衍斌, 等译. 北京: 原子能出版社, 1990

    Miller R B. Intense electron beam physics[M]. Liu Xisan, Zhang Lanzhi, Wu Yanbin, et al, trans. Beijing: Atomic Energy Press, 1990
    [10] 白珍. Ka波段大过模同轴Cerenkov型高功率微波振荡器研究[D]. 长沙: 国防科技大学, 2017

    Bai Zhen. Investigation on Ka-band super overmoded coaxial Cerenkov high power microwave oscillator[D]. Changsha: National University of Defense Technology, 2017
    [11] Vlasov A N, Shkvarunets A G, Rodgers J C, et al. Overmoded GW-class surface-wave microwave oscillator[J]. IEEE Transactions on Plasma Science, 2000, 28(3): 550-560. doi: 10.1109/27.887671
    [12] 张点. 过模O型Cerenkov高功率微波产生器件相关理论和关键问题研究[D]. 长沙: 国防科技大学, 2014

    Zhang Dian. Investigation on related theory and key problems of overmoded O-type Cerenkov high power microwave generators[D]. Changsha: National University of Defense Technology, 2014
    [13] Deng Bingfang, He Juntao, Ling Junpu, et al. Theoretical analysis and experimental verification of electron beam transmission with low guiding magnetic field in V-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2021, 28: 073102. doi: 10.1063/5.0042738
    [14] Ye Hu, Teng Yan, Chen Changhua, et al. A millimeter wave relativistic backward wave oscillator operating in TM03 mode with low guiding magnetic field[J]. Physics of Plasmas, 2015, 22: 063104. doi: 10.1063/1.4922428
    [15] Deng Bingfang, He Juntao, Ling Junpu. A coaxial V-band relativistic transit-time oscillator operating in TM02 mode[J]. IEEE Transactions on Plasma Science, 2020, 48(12): 4350-4355. doi: 10.1109/TPS.2020.3039051
    [16] Deng Bingfang, He Juntao, Ling Junpu, et al. Preliminary research of a V-band coaxial relativistic transit-time oscillator with traveling wave output structure[J]. Physics of Plasmas, 2021, 28: 103103. doi: 10.1063/5.0060186
    [17] Ye Hu, Chen Changhua, Ning Hui, et al. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field[J]. Physics of Plasmas, 2015, 22: 123110. doi: 10.1063/1.4937777
    [18] Deng Bingfang, He Juntao, Ling Junpu, et al. A V-band coaxial relativistic transit-time oscillator operating in TM02 mode with shallow corrugated output structure[J]. IEEE Electron Device Letters, 2022, 43(7): 1125-1128. doi: 10.1109/LED.2022.3178071
    [19] Amin M R, Ogura K, Kitamura H, et al. Analysis of the electromagnetic waves in an overmoded finite length slow wave structure[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(4): 815-822. doi: 10.1109/22.375229
    [20] Miller S M, Antonsen Jr T M, Levush B, et al. Theory of relativistic backward wave oscillators operating near cutoff[J]. Physics of Plasmas, 1994, 1(3): 730-740. doi: 10.1063/1.870818
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  39
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2024-07-17
  • 录用日期:  2024-07-17
  • 网络出版日期:  2024-07-19
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回