留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率高效率速调管输出耦合器的优化与设计

陆志军 周祖圣 肖欧正 李晓

陆志军, 周祖圣, 肖欧正, 等. 高功率高效率速调管输出耦合器的优化与设计[J]. 强激光与粒子束, 2024, 36: 103002. doi: 10.11884/HPLPB202436.240155
引用本文: 陆志军, 周祖圣, 肖欧正, 等. 高功率高效率速调管输出耦合器的优化与设计[J]. 强激光与粒子束, 2024, 36: 103002. doi: 10.11884/HPLPB202436.240155
Lu Zhijun, Zhou Zusheng, Xiao Ouzheng, et al. Optimization and design of high-power high-efficiency klystron output coupler[J]. High Power Laser and Particle Beams, 2024, 36: 103002. doi: 10.11884/HPLPB202436.240155
Citation: Lu Zhijun, Zhou Zusheng, Xiao Ouzheng, et al. Optimization and design of high-power high-efficiency klystron output coupler[J]. High Power Laser and Particle Beams, 2024, 36: 103002. doi: 10.11884/HPLPB202436.240155

高功率高效率速调管输出耦合器的优化与设计

doi: 10.11884/HPLPB202436.240155
基金项目: 中国科学院高能物理研究所基金谢家麟基金项目(E4546JU2)
详细信息
    作者简介:

    陆志军,luzj@ihep.ac.cn

    通讯作者:

    周祖圣,zhouzs@ihep.ac.cn

  • 中图分类号: TN122:O572.21+1

Optimization and design of high-power high-efficiency klystron output coupler

  • 摘要: 输出耦合器作为速调管关键部件,其性能直接关系到速调管的整体表现。然而,耦合器故障却是速调管及多种真空电子设备中最为常见的问题之一,特别是在高连续波功率运行场景下,这一问题更为突出。针对连续波650 MHz/800 kW高效率速调管,对输出耦合器进行优化设计,并在单注和多注速调管耦合器测试方面取得了重要突破:单注速调管输出耦合器在连续波模式下的测试功率已达到690 kW以上,为了进一步增加功率容量,采用T-bar结构过渡,并对耦合器进行优化设计,使陶瓷附近电场分布更均匀;而多注速调管矩形波导窗输出耦合器最高测试功率达到全驻波115 kW。此外,通过对耦合器的结构、材料以及散热方式进行分析与优化,积极探索提升耦合器功率容量的多种可能途径,进一步增强了速调管的稳定性和可靠性。
  • 图  1  650 MHz/800 kW单注速调管

    Figure  1.  650 MHz/800 kW single-beam klystron

    图  2  多注速调管与输出耦合器示意图

    Figure  2.  Schematic of multi-beam klystron and the output coupler

    图  3  单注速调管输出同轴耦合器示意图

    Figure  3.  Schematic of the single-beam klystron output coupler

    图  4  单注速调管输出耦合器温度和应力分析

    Figure  4.  Thermal and thermal stress analysis of the single-beam klystron output coupler

    图  5  多注速调管输出耦合器结构图

    Figure  5.  Structure diagram of multi beam klystron output coupler

    图  6  陶瓷温升和应力分布

    Figure  6.  Temperature increase and thermal stress of ceramic

    图  7  单注速调管耦合器冷测结果

    Figure  7.  S-parameter test of single-beam klystron output coupler

    图  8  多注速调管耦合器S11测试结果

    Figure  8.  S11 test of multi-beam klystron output coupler

    图  9  T-bar 耦合器结构模拟分析

    Figure  9.  Analysis results of T-bar coupler

    图  10  多注速调管输出耦合器高功率测试平台

    Figure  10.  High-power test platform of multi-beam klystron output coupler

  • [1] Gao Jie. CEPC technical design report: accelerator[J]. Radiation Detection Technology and Methods, 2024, 8(1): 1-1105. doi: 10.1007/s41605-024-00463-y
    [2] Zhou Zusheng, Chen Y, Chi Yunlong, et al. Progress on CEPC 650 MHz klystron[J]. International Journal of Modern Physics A, 2021, 36: 2142011. doi: 10.1142/S0217751X21420112
    [3] Lu Zhijun, Fukuda S, Zhou Zusheng, et al. Design and development of radio frequency output window for circular electron–positron collider klystron[J]. Chinese Physics B, 2018, 27: 118402. doi: 10.1088/1674-1056/27/11/118402
    [4] Wang Shengchang, Fukuda S, Lu Zhijun, et al. Design study and modeling of multi-beam klystron for circular electron positron collider[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1026: 166208. doi: 10.1016/j.nima.2021.166208
    [5] Saito Y. Breakdown phenomena in rf windows[J]. AIP Conference Proceedings, 1995, 337(1): 373-382.
    [6] Vyas S, Shekhawat N, Maurya S, et al. Computer simulation and analysis of 350-MHz high-power coaxial RF window and T-bar transition[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2693-2698. doi: 10.1109/TPS.2012.2210056
    [7] Naito F, Sakai H, Yoshimoto S, et al. The input coupler for the KEKB ARES cavity[C]//Proceedings of the 1st Asian Particle Accelerator Conference. 1998: 776.
    [8] Huang Tongming, Pan Weimin, Ma Qiang, et al. High power input coupler development for BEPCII 500MHz superconducting cavity[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623(3): 895-902. doi: 10.1016/j.nima.2010.08.108
    [9] 丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25

    Ding Yaogen. Technical status and latest progress of high power klystrons[J]. Vacuum Electronics, 2020(1): 1-25
    [10] Ko S K, Lee B Y, Lee K O, et al. First operating test of the 700 MHz 1 mw prototype klystron for a proton accelerator[J]. Nuclear Engineering and Technology, 2006, 38(8): 779-784.
    [11] Rimmer R A, Koehler G, Saleh T, et al. A high-power L-band RF window[C]//PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). 2001: 921-923.
    [12] Wang Shengchang, Zhou Zusheng, Lu Zhijun, et al. Development of RF windows for 650 MHz multibeam klystron[J]. Nuclear Science and Techniques, 2023, 34: 136. doi: 10.1007/s41365-023-01294-0
    [13] Xiao Ouzheng, Fukuda S, Zhou Zusheng, et al. Design and high-power test of 800-kW UHF klystron for CEPC[J]. Chinese Physics B, 2022, 31: 088401. doi: 10.1088/1674-1056/ac6b26
    [14] Lu Zhijun, Zhou Zusheng, Xiao Ouzheng, et al. Study and analysis of high-power coupler failure due to asymmetric electric field distribution[J]. Vacuum, 2024, 227: 113406. doi: 10.1016/j.vacuum.2024.113406
  • 加载中
图(10)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  29
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-07-22
  • 录用日期:  2024-07-22
  • 网络出版日期:  2024-08-30
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回