留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于邦纳多球谱仪探测的中子能谱解谱研究

张硕 范杰清 张芳 赵强 郝建红 董志伟

张硕, 范杰清, 张芳, 等. 基于邦纳多球谱仪探测的中子能谱解谱研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240156
引用本文: 张硕, 范杰清, 张芳, 等. 基于邦纳多球谱仪探测的中子能谱解谱研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240156
Zhang Shuo, Fan Jieqing, Zhang Fang, et al. Neutron spectrum unfolding based on the detection of Bonner multi-sphere spectrometer[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240156
Citation: Zhang Shuo, Fan Jieqing, Zhang Fang, et al. Neutron spectrum unfolding based on the detection of Bonner multi-sphere spectrometer[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240156

基于邦纳多球谱仪探测的中子能谱解谱研究

doi: 10.11884/HPLPB202436.240156
基金项目: 国家自然科学青年基金项目(12205024)
详细信息
    作者简介:

    张 硕,19953021979@163.com

    通讯作者:

    张 芳,zhang_fang@iapcm.ac.cn

  • 中图分类号: TL81

Neutron spectrum unfolding based on the detection of Bonner multi-sphere spectrometer

  • 摘要: 在中子辐射领域,中子解谱问题备受关注。邦纳多球谱仪常用于中子能谱探测,最大熵法可针对多球谱仪探测数据进行中子解谱。基于此原理,建立包含邦纳多球谱仪的仿真模型,以蒙特卡罗方法的模拟结果作为先验谱,使用基于最大熵原理的最大熵反卷积(MAXED)方法进行中子解谱,与文献数据对比验证后,证明了方法的有效性和准确性。通过增加蒙特卡罗方法的随机粒子数,获得了精确度不同的多组先验谱,对于不同的先验谱,最终解谱结果均可获得统计学显著性,解谱结果有效。经过对比,先验谱越精准,最终解谱结果准确度越高,说明通过合适的降方差方法获得准确的蒙特卡罗计算结果至关重要,可为后续研究和实验提供参考。同步使用了基于迭代算法的GRAVEL方法进行中子解谱,两种解谱方法计算结果对比进一步证明了MAXED方法解谱的优越性能。
  • 图  1  仿真模型示意图

    Figure  1.  Simulation model diagram (Section view, ① concrete, ② air, ③ Bonner ball, ④ neutron source)

    图  2  邦纳球模型示意图

    Figure  2.  Model diagram of Bonner spectrometer (Section view, ① polyethylene layer, ② aluminum shell, ③ LiI scintillator)

    图  3  MAXED解谱结果

    Figure  3.  Spectral solution result of MAXED

    图  4  不同精度的蒙特卡罗方法计算结果

    Figure  4.  Results of Monte Carlo method with different precision

    图  5  不同先验谱情况下MAXED解谱结果

    Figure  5.  The results of MAXED spectral decomposition under different prefabricated spectra

    图  6  MAXED与GRAVEL解谱结果对比

    Figure  6.  Comparison of spectral results between MAXED and GRAVEL

    表  1  材料元素构成

    Table  1.   Composition of material elements

    Name Density/(g/cm3) Element (weight fraction)
    concrete 2.30 H(2.2%), C(0.3%), O(57.5%), Na(1.5%), Mg(0.1%), Al(2%), Si(30.5%), K(1%), Ca(4.3%), Fe(0.6%)
    polythene 0.95 C(86%), H(14%)
    Al shell 2.70 Al(100%)
    LiI scintillator 3.84 6Li(5%), I(95%)
    air 1.20×10−3 C(0.01%), N(76.52%), O(23.47%)
    下载: 导出CSV

    表  2  不同随机粒子数情况下可信结果占比

    Table  2.   The proportion of reliable results under different random particle numbers

    Random particle population Percentage of credible results
    2.2×107 34.92%
    2.2×108 52.38%
    3.0×108 55.56%
    5.0×108 60.32%
    1.0×109 74.60%
    下载: 导出CSV

    表  3  不同迭代次数情况下GRAVEL解谱结果χ2-PDF值

    Table  3.   χ2-PDF values of GRAVEL solution results under different iterations

    iterations χ2-PDF
    50 1.34
    100 1.18
    150 1.08
    207 0.99
    下载: 导出CSV
  • [1] 范启蒙, 吕宁, 过惠平, 等. 基于多球中子谱仪的解谱算法研究现状[J]. 现代应用物理, 2023, 14(3):94-100

    Fan Qimeng, Lyu Ning, Guo Huiping, et al. Status and progress of unfolding algorithms for neutron spectrum based on multishpere neutron spectrometer[J]. Modern Applied Physics, 2023, 14(3): 94-100
    [2] Lim S, Kim D, Kang J G, et al. Development of neutron time-of-flight measurement system for 1.7-MV tandem proton accelerator with lithium target[J]. Nuclear Engineering and Technology, 2022, 54(2): 437-441. doi: 10.1016/j.net.2021.03.030
    [3] 孙博文, 代文翰, 张辉, 等. 241Am-Be强中子源刻度多球中子谱仪[J]. 核电子学与探测技术, 2022, 42(6):1063-1067

    Sun Bowen, Dai Wenhan, Zhang Hui, et al. Calibration of a Bonner sphere spectrometer using strong 24 Am-Be source[J]. Nuclear Electronics & Detection Technology, 2022, 42(6): 1063-1067
    [4] 谢树青, 安宁, 吴磊, 等. 中子周围剂量当量率测量技术的发展与现状[J]. 核安全, 2020, 19(4):83-87

    Xie Shuqing, An Ning, Wu Lei, et al. Development and status of the measurement technology of neutron peripheral dose equivalent rate[J]. Nuclear Safety, 2020, 19(4): 83-87
    [5] 吴光华, 吴黄鑫, 顾龙, 等. 多箔活化法测量BNCT中子束能谱模拟研究[J]. 原子能科学技术, 2023, 57(9):1817-1826 doi: 10.7538/yzk.2023.youxian.0001

    Wu Guanghua, Wu Huangxin, Gu Long, et al. Simulation study on energy spectrum determination of BNCT neutron beam with multi-foil activation method[J]. Atomic Energy Science and Technology, 2023, 57(9): 1817-1826 doi: 10.7538/yzk.2023.youxian.0001
    [6] 熊厚华, 陈思泽, 王永峰, 等. 基于氘氚聚变中子源的双功能锂铅包层(DFLL-TBM)模型中子学实验[J]. 核科学与工程, 2018, 38(1):75-80 doi: 10.3969/j.issn.0258-0918.2018.01.011

    Xiong Houhua, Chen Size, Wang Yongfeng, et al. Neutronics experiment on DFLL-TBM mock-up irradiated with D-T fusion neutrons[J]. Nuclear Science and Engineering, 2018, 38(1): 75-80 doi: 10.3969/j.issn.0258-0918.2018.01.011
    [7] 杨旭. 中子能谱反演算法及紧凑型D-D中子发生器中子学特性测量研究[D]. 兰州: 兰州大学, 2023

    Yang Xu. Research on inversion algorithm of neutron energy spectrum and measurement of neutron characteristics of compact D-D neutron generator[D]. Lanzhou: Lanzhou University, 2023
    [8] Mares V, Schraube H. Evaluation of the response matrix of a Bonner sphere spectrometer with LiI detector from thermal energy to 100 MeV[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 337(2/3): 461-473.
    [9] 李崇伟. 基于多球谱仪的252Cf中子辐射场能谱及注量测量方法研究[D]. 北京: 军事科学院, 2023

    Li Chongwei. Research on measurement method of 252Cf neutron radiation field energy spectrum and fluence based on multi-sphere spectrometer[D]. Beijing: Academy of Military Sciences, 2023
    [10] 黄迁明, 刘斌, 陆婷, 等. 中子能谱测量中的解谱技术研究进展[J]. 辐射防护, 2022, 42(4):265-279 doi: 10.3969/j.issn.1000-8187.2022.4.fsfh202204001

    Huang Qianming, Liu Bin, Lu Ting, et al. Progress in research of spectrum unfolding method on neutron spectrum measurement[J]. Radiation Protection, 2022, 42(4): 265-279 doi: 10.3969/j.issn.1000-8187.2022.4.fsfh202204001
    [11] 郑俞. 蒙特卡罗减方差加速方法研究与应用[D]. 合肥: 中国科学技术大学, 2021

    Zheng Yu. Research and application of Monte Carlo variance reduction method[D]. Hefei: University of Science and Technology of China, 2021
    [12] Green T, Biegalski S, O’Kelly S, et al. Neutron energy spectrum determination and flux measurement using MAXED, GRAVEL, and MCNP for RACE experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(1): 279-284. doi: 10.1007/s10967-007-0446-0
    [13] Reginatto M, Goldhagen P. MAXED, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data[J]. Health Physics, 1999, 77(5): 579-583. doi: 10.1097/00004032-199911000-00012
    [14] Giacomelli L, Reginatto M, JET EFDA Contributors. Optimization of MAXED input parameters with applications to the unfolding of neutron diagnostics data from the Joint European Torus[J]. Review of Scientific Instruments, 2019, 90: 093505. doi: 10.1063/1.5097784
    [15] Decker A W. Verification and validation of Monte Carlo N-particle code 6 (MCNP6) with neutron protection factor measurements of an iron box[D]. 2014: 252-259.
    [16] 李会, 唐智辉, 闫学文, 等. Geant4用于模拟现场中子谱慢化材料选型适用性研究[J]. 核电子学与探测技术, 2023, 43(3):506-512 doi: 10.3969/j.issn.0258-0934.2023.03.011

    Li Hui, Tang Zhihui, Yan Xuewen, et al. Study on the suitability of Geant4 for the selection of moderation material used to simulated workplace neutron spectrum[J]. Nuclear Electronics & Detection Technology, 2023, 43(3): 506-512 doi: 10.3969/j.issn.0258-0934.2023.03.011
    [17] Griffith R V, Palfalvi J, Madhvanath U. Compendium of neutron spectra and detector responses for radiation protection purposes[R]. Vienna: International Atomic Energy Agency, 2001: 97.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-09-14
  • 录用日期:  2024-09-14
  • 网络出版日期:  2024-10-19

目录

    /

    返回文章
    返回