留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异面结构雪崩GaAs光导开关的制备及特性测试

杨迎香 杨向红 朱章杰 黄嘉 李昕 胡龙

杨迎香, 杨向红, 朱章杰, 等. 异面结构雪崩GaAs光导开关的制备及特性测试[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240161
引用本文: 杨迎香, 杨向红, 朱章杰, 等. 异面结构雪崩GaAs光导开关的制备及特性测试[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240161
Yang Yingxiang, Yang Xianghong, Zhu Zangjie, et al. Fabrication of avalanche GaAs photoconductive switch with opposed-electrode structure and its switching characteristics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240161
Citation: Yang Yingxiang, Yang Xianghong, Zhu Zangjie, et al. Fabrication of avalanche GaAs photoconductive switch with opposed-electrode structure and its switching characteristics[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240161

异面结构雪崩GaAs光导开关的制备及特性测试

doi: 10.11884/HPLPB202436.240161
基金项目: 国家自然科学基金面上项目(52177156); 脉冲功率激光技术国家重点实验室开放基金项目(SKL2021KF05)
详细信息
    作者简介:

    杨迎香,xy_yang@stu.xjtu.edu.cn

    通讯作者:

    杨向红,yxh8000@xjtu.edu.cn

    胡 龙,hulong@xjtu.edu.cn

  • 中图分类号: TN36

Fabrication of avalanche GaAs photoconductive switch with opposed-electrode structure and its switching characteristics

  • 摘要: 雪崩砷化镓光导开关(PCSS)因其超快开关速度、低触发抖动、光电隔离、高功率容量、高重复频率以及器件结构灵活的特点,得到广泛应用。制备封装了电极间隙为5 mm的异面结构GaAs光导开关,对不同偏置电场下(36~76 kV/cm)开关的暗态和开态的电学特性进行了测试分析,结果表明其具有百皮秒~纳秒量级的上升沿、低暗态泄漏电流(0.15~6.61 μA)、高耐压(18~38 kV)的特点。实验探究了开关工作次数与输出电压峰值的关系,结果表明随着工作次数的增大,输出电压幅值呈台阶型降低趋势,在20 kV、2 Hz条件下,开关寿命达4.0×104次。
  • 图  1  GaAs光导开关的结构示意图和实物图

    Figure  1.  Fabrication procedures and physical picture of a GaAs photoconductive semiconductor switch

    图  2  GaAs光导开关的测试电路示意图

    Figure  2.  Schematic diagram of the test circuit for GaAs photoconductive semiconductor switches

    图  3  不同偏置电场下GaAs光导开关的电学特性

    Figure  3.  Electrical characteristics of GaAs photoconductive semiconductor switches under different bias electric fields

    图  4  GaAs光导开关的寿命测试

    Figure  4.  Lifetime testing of GaAs photoconductive semiconductor switches

    图  5  GaAs光导开关失效器件实物图

    Figure  5.  Physical picture of GaAs photoconductive semiconductor switch failure device

  • [1] Wei Jinhong, Chen Hong, Zeng Fanzheng, et al. Investigation on the switching transient of GaAs PCSS operating in the transition from linear to nonlinear mode[J]. IEEE Transactions on Electron Devices, 2023, 70(5): 2235-2240. doi: 10.1109/TED.2023.3259386
    [2] Wang Wei, Xia Liansheng, Chen Yi, et al. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes[J]. Applied Physics Letters, 2015, 106: 022108. doi: 10.1063/1.4906035
    [3] Luan Chongbiao, Li Hongtao. Influence of hot-carriers on the on-state resistance in Si and GaAs photoconductive semiconductor switches working at long pulse width[J]. Chinese Physics Letters, 2020, 37: 044203. doi: 10.1088/0256-307X/37/4/044203
    [4] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
    [5] Wang Langning, Liu Jingliang. Solid-state nanosecond pulse generator using photoconductive semiconductor switch and helical pulse forming line[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3240-3245. doi: 10.1109/TPS.2017.2764502
    [6] Wang Zhiguo, Sun Fengju, Qiu Aici, et al. A 80 kV gas switch triggered by a 17 μJ fiber-optic laser[J]. Review of Scientific Instruments, 2020, 91: 056104. doi: 10.1063/1.5141924
    [7] Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
    [8] 韩伟伟. 新型垂直型4H-SiC基光导开关的研制[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2019

    Han Weiwei. The fabrication and characterization of a new vertical 4H-SiC photoconductive switch[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2019
    [9] 杨向红. 氮化镓光电导开关关键技术及其微波产生实验研究[D]. 西安: 西安交通大学, 2023

    Yang Xianghong. Experimental study on the key technology of GaN photoconductive switch and its microwave generation[D]. Xi'an: Xi'an Jiaotong University, 2023
    [10] Leach J H, Metzger R, Preble E A, et al. High voltage bulk GaN-based photoconductive switches for pulsed power applications[C]//Proceedings of SPIE 8625, Gallium Nitride Materials and Devices VIII. 2013: 86251Z.
    [11] Chowdhury A R, Nikishin S, Dickens J, et al. Numerical studies into the parameter space conducive to "lock-on" in a GaN photoconductive switch for high power applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 469-475. doi: 10.1109/TDEI.2018.007805
    [12] Zutavern F J, Loubriel G M, Hjalmarson H P, et al. Properties of high gain GaAs switches for pulsed power applications[C]//11th IEEE International Pulsed Power Conference. 1997: 959-964.
    [13] Pocha M D, Druce R L, Wilson M J, et al. Avalanche photoconductive switching[C]//7th Pulsed Power Conference. 1989: 866-868.
    [14] Kim S D, Ko D, Kim Y W. Investigation of the low contact resistance via alloying of Au/Ni/AuGe-GaAs contact structures[J]. Materials Letters, 2022, 318: 132140. doi: 10.1016/j.matlet.2022.132140
    [15] Yu L S, Wang L C, Marshall E D, et al. The temperature dependence of contact resistivity of the Ge/Pd and the Si/Pd nonalloyed contact scheme on n-GaAs[J]. Journal of Applied Physics, 1989, 65(4): 1621-1625. doi: 10.1063/1.342954
    [16] 刘宏伟, 袁建强, 刘金锋, 等. 大功率GaAs光导开关寿命实验研究[J]. 强激光与粒子束, 2010, 22(4):795-798 doi: 10.3788/HPLPB20102204.0795

    Liu Hongwei, Yuan Jianqiang, Liu Jinfeng, et al. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(4): 795-798 doi: 10.3788/HPLPB20102204.0795
    [17] 袁建强, 谢卫平, 周良骥, 等. 光导开关研究进展及其在脉冲功率技术中的应用[J]. 强激光与粒子束, 2008, 20(1):171-176

    Yuan Jianqiang, Xie Weiping, Zhou Liangji, et al. Developments and applications of photoconductive semiconductor switches in pulsed power technology[J]. High Power Laser and Particle Beams, 2008, 20(1): 171-176
    [18] Yang Yingxiang, Yang Xianghong, Liu Kang, et al. Pd/Ge/Ti/Pt/Au metal stack on semi-insulating gallium arsenide: Ohmic contact and temperature dependence[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4604-4611. doi: 10.1109/TED.2023.3298594
    [19] Yang Yingxiang, Hu Long, Yang Xianghong, et al. Reducing dark-state current for GaAs photoconductive semiconductor switch by ultrafine grinding process[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3565-3569. doi: 10.1109/TED.2024.3384135
    [20] Xu Ming, Liu Chun, Luo Wei, et al. Pulse compression characteristics of an opposed-electrode nonlinear GaAs photoconductive semiconductor switch at 2 μJ excitation[J]. IEEE Electron Device Letters, 2022, 43(5): 753-756. doi: 10.1109/LED.2022.3158552
  • 加载中
图(5)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  83
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-07-08
  • 录用日期:  2024-07-08
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回