留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大面积均匀轫致辐射场模拟及其源设计

丁柏文 郝建红 张芳 赵强 范杰清 董志伟

丁柏文, 郝建红, 张芳, 等. 大面积均匀轫致辐射场模拟及其源设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240175
引用本文: 丁柏文, 郝建红, 张芳, 等. 大面积均匀轫致辐射场模拟及其源设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240175
Ding Baiwen, Hao Jianhong, Zhang Fang, et al. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240175
Citation: Ding Baiwen, Hao Jianhong, Zhang Fang, et al. Simulation and source design of large area uniform bremsstrahlung field[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240175

大面积均匀轫致辐射场模拟及其源设计

doi: 10.11884/HPLPB202436.240175
基金项目: 国家自然科学青年基金项目(12205024)
详细信息
    作者简介:

    丁柏文,d379042857@163.com

    通讯作者:

    张 芳,fangzhang328@163.com

  • 中图分类号: TL501

Simulation and source design of large area uniform bremsstrahlung field

  • 摘要: 基于蒙特卡罗方法建立了单环及双环平行电子束轰击钽靶模型,以此模拟环形二极管产生轫致辐射场的过程。模型选用电子束能量为1.5 MeV,钽金属靶厚度为200 μm,并采用探测器计数方法对单环电子束在靶后10 cm产生的轫致辐射场剂量进行模拟研究。对于单环二极管结构,环内径是影响靶后轫致辐射场均匀性的主要因素,内径越大,中心剂量均匀性越差。相比环内径,环宽则主要影响辐射场的剂量大小,对于均匀性的影响较小。当单环内径为19 cm、外径为20 cm时,能得到最大面积为2290.221 cm2的均匀辐射场。双环二极管结构对比单环结构能得到更大面积的均匀辐射场。但外环环径的变化会导致辐射场剂量分布出现多级峰值,同时对辐射场各个区域的均匀性造成影响。模拟结果表明,通过在上述单环结构外侧添加内径为43.5 cm、外径为44.167 cm的同心外环,可将满足均匀度要求的辐射场面积增大至7238.229 cm2
  • 图  1  模拟模型

    Figure  1.  Simulation model

    图  2  靶后10cm轫致辐射场分布

    Figure  2.  Dose distribution of the 10 cm bremsstrahlung radiation field after the target

    图  3  不同内径下的剂量峰值以及中心均匀度大小

    Figure  3.  Dose peak and center uniformity at different inner diameters

    图  4  最大均匀辐射场面积与内径的关系

    Figure  4.  Relationship between the area of the maximum uniform radiation field and the inner diameter

    图  5  不同环宽对应的辐射场参数

    Figure  5.  Radiation field parameters for different ring widths

    图  6  双环模型

    Figure  6.  double ring model

    图  7  靶后10 cm轫致辐射场分布

    Figure  7.  Dose distribution of the 10 cm bremsstrahlung radiation field after the target

    图  8  不同外环内径下的辐射场参数

    Figure  8.  Radiation field parameters under different inner diameters of outer rings

    图  9  靶后10 cm轫致辐射场分布(r3=43.5cm)

    Figure  9.  Dose distribution of the 10 cm bremsstrahlung radiation field after the target (r3=43.5cm)

    表  1  不同内径对应次级凹陷处的均匀度大小

    Table  1.   different inner diameters correspond to the uniformity of the secondary depression

    r3/cm dose uniformity r3/cm dose uniformity
    42 0.5454 43 0.5168
    43.5 0.5019 44 0.4892
    下载: 导出CSV
  • [1] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2] 张催, 张益海, 商宏杰, 等. X射线管原始谱和透射谱的测量及应用[J]. 原子能科学技术, 2016, 50(10):1859-1865 doi: 10.7538/yzk.2016.50.10.1859

    Zhang Cui, Zhang Yihai, Shang Hongjie, et al. Measurement and application of original spectrum and transmission Spectrum of X-ray tube[J]. Atomic Energy Science and Technology, 2016, 50(10): 1859-1865 doi: 10.7538/yzk.2016.50.10.1859
    [3] 杨强, 葛良全, 谷懿, 等. 微型X射线管靶材厚度理论计算与出射光谱模拟研究[J]. 光谱学与光谱分析, 2013, 33(4):1130-1134 doi: 10.3964/j.issn.1000-0593(2013)04-1130-05

    Yang Qiang, Ge Liangquan, Gu Yi, et al. Theoretical calculation and simulation research on micro X-ray tube target thickness and spectra[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1130-1134 doi: 10.3964/j.issn.1000-0593(2013)04-1130-05
    [4] Salvat F, Fernández-Varea J M, Sempau J, et al. Monte Carlo simulation of bremsstrahlung emission by electrons[J]. Radiation Physics and Chemistry, 2006, 75(10): 1201-1219. doi: 10.1016/j.radphyschem.2005.05.008
    [5] 刘锡三. 强流粒子束及其应用[M]. 北京: 国防工业出版社, 2007

    Liu Xisan. Intense particle beams and its applications[M]. Beijing: National Defense Industry Press, 2007
    [6] 赖祖武. 抗辐射电子学[M]. 北京: 国防工业出版社, 1998

    Lai Zuwu. Radiation hardening electronics[M]. Beijing: National Defense Industry Press, 1998
    [7] 何辉, 禹海军, 王毅, 等. 4 MeV闪光X光机轫致辐射靶设计[J]. 强激光与粒子束, 2019, 31:125102 doi: 10.11884/HPLPB201931.190273

    He Hui, Yu Haijun, Wang Yi, et al. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31: 125102 doi: 10.11884/HPLPB201931.190273
    [8] 邱爱慈. 脉冲X射线模拟源技术的发展[J]. 中国工程科学, 2000, 2(9):24-28 doi: 10.3969/j.issn.1009-1742.2000.09.004

    Qiu Aici. The development of technology for pulsed X ray simulators[J]. Engineering Science, 2000, 2(9): 24-28 doi: 10.3969/j.issn.1009-1742.2000.09.004
    [9] 邱爱慈, 吕敏. 闪光二号──一台太瓦级脉冲电子束加速器及其应用[J]. 物理, 1995, 24(6):325-331

    Qiu Aici, Lü Min. Flash-Ⅱ, a TW pulsed electron beam accelerator and its application[J]. Physics, 1995, 24(6): 325-331
    [10] 杨实, 任书庆, 丛培天, 等. “闪光二号”加速器适应性改造[J]. 强激光与粒子束, 2016, 28:015103 doi: 10.11884/HPLPB201628.015103

    Yang Shi, Ren Shuqing, Cong Pentian, et al. Transformation of the Flash-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2016, 28: 015103 doi: 10.11884/HPLPB201628.015103
    [11] Bloomquist D D, Stinnett R W, Mcdaniel D H, et al. Saturn: a large area X-ray simulation accelerator[C]//Presented at the 6th Institute of Electrical and Electronic Engineers Pulsed Power Conference. 1987.
    [12] 李进玺, 吴伟, 刘逸飞, 等. 多路并联二极管辐射场剂量均匀性研究[J]. 辐射研究与辐射工艺学报, 2023, 41:050703

    Li Jinxi, Wu Wei, Liu Yifei, et al. Study on the dose uniformity of multi-channel parallel diode[J]. Journal of Radiation Research and Radiation Processing, 2023, 41: 050703
    [13] 彭博, 黄宁, 王鹏, 等. 10~50 keV的X射线管轫致辐射能谱的解析计算[J]. 原子能科学技术, 2023, 57(6):1233-1242 doi: 10.7538/yzk.2022.youxian.0570

    Peng Bo, Huang Ning, Wang Peng, et al. Analytical calculation of bremsstrahlung spectrum for X-ray tube at 10-50 keV[J]. Atomic Energy Science and Technology, 2023, 57(6): 1233-1242 doi: 10.7538/yzk.2022.youxian.0570
    [14] 钦佩, 唐斌, 傅玉川, 等. 低能电子轫致辐射的蒙特卡罗模拟[J]. 辐射研究与辐射工艺学报, 2009, 27(6):337-340 doi: 10.3969/j.issn.1000-3436.2009.06.004

    Qin Pei, Tang Bin, Fu Yuchuan, et al. Monte Carlo simulation on the bremsstrahlung of low energy electrons[J]. Journal of Radiation Research and Radiation Processing, 2009, 27(6): 337-340 doi: 10.3969/j.issn.1000-3436.2009.06.004
    [15] 蒯斌, 邱爱慈, 王亮平, 等. 强脉冲超硬X射线产生技术研究[J]. 强激光与粒子束, 2005, 17(11):1739-1743

    Kuai Bin, Qiu Aici, Wang Liangping, et al. Generation of intense pulsed super-hard X-ray[J]. High Power Laser and Particle Beams, 2005, 17(11): 1739-1743
    [16] 钟甜城. 耦合磁绝缘传输线的大面积轫致辐射二极管设计[D]. 北京: 中国工程物理研究院, 2017

    Zhong Tiancheng. Design of large area-bremsstrahlung diode coupled with MITL[D]. Beijing: China Academy of Engineering Physics, 2017
    [17] 邵文成, 孙普男, 代文江. 高能电子在加速器靶物质中射程的数值模拟[J]. 原子能科学技术, 2008, 42(11):992-996 doi: 10.7538/yzk.2008.42.11.0992

    Shao Wencheng, Sun Punan, Dai Wenjiang. Numerical simulation on range of high-energy electron moving in accelerator Target[J]. Atomic Energy Science and Technology, 2008, 42(11): 992-996 doi: 10.7538/yzk.2008.42.11.0992
    [18] 魏熙晔, 李泉凤, 严慧勇. 高能电子束韧致辐射特性的理论研究[J]. 物理学报, 2009, 58(4):2313-2319 doi: 10.3321/j.issn:1000-3290.2009.04.030

    Wei Xiye, Li Quanfang, Yan Huiyong. Theoretical study on bremsstrahlung of high energy electrons[J]. Acta Physica Sinica, 2009, 58(4): 2313-2319 doi: 10.3321/j.issn:1000-3290.2009.04.030
    [19] Metropolis N, Ulam S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341. doi: 10.1080/01621459.1949.10483310
    [20] Adekitan A I. Monte Carlo analysis/simulation[D]. Ibadan: Ibadan University of Technology, 2014.
    [21] Fisher I Z. Applications of the Monte Carlo method in statistical physics[J]. Soviet Physics Uspekhi, 1960, 2: 783. (查阅网上资料, 不确定修改是否正确, 请确认) .
    [22] Sanford T W L, Mock R C. An intense large-volume uniform source of bremsstrahlung for pulsed gamma ray simulation[J]. IEEE Transactions on Nuclear Science, 1992, 39(6): 2060-2069. doi: 10.1109/23.211404
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-09-18
  • 录用日期:  2024-08-28
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回