留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ku波段相对论扩展互作用速调管振荡器粒子模拟研究

蒋俊杰 阳福香 党方超 葛行军 张鹏 李家文 邓如金 李志敏

蒋俊杰, 阳福香, 党方超, 等. Ku波段相对论扩展互作用速调管振荡器粒子模拟研究[J]. 强激光与粒子束, 2024, 36: 103008. doi: 10.11884/HPLPB202436.240190
引用本文: 蒋俊杰, 阳福香, 党方超, 等. Ku波段相对论扩展互作用速调管振荡器粒子模拟研究[J]. 强激光与粒子束, 2024, 36: 103008. doi: 10.11884/HPLPB202436.240190
Jiang Junjie, Yang Fuxiang, Dang Fangchao, et al. Particle simulation study of Ku-band relativistic extended interaction klystron oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 103008. doi: 10.11884/HPLPB202436.240190
Citation: Jiang Junjie, Yang Fuxiang, Dang Fangchao, et al. Particle simulation study of Ku-band relativistic extended interaction klystron oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 103008. doi: 10.11884/HPLPB202436.240190

Ku波段相对论扩展互作用速调管振荡器粒子模拟研究

doi: 10.11884/HPLPB202436.240190
详细信息
    作者简介:

    蒋俊杰,229517315@qq.com

    通讯作者:

    党方超,dangfangchao@sina.com

  • 中图分类号: TN752.5

Particle simulation study of Ku-band relativistic extended interaction klystron oscillator

  • 摘要: 射频击穿、模式竞争是导致速调管振荡器(RKO)功率下降、脉冲缩短的主要原因。本文引入扩展互作用提取结构,可以有效降低提取腔射频电场,增大器件功率容量。传统的双间隙提取结构将电子能量在提取腔内转化为微波能量,共用一个通道输出。而扩展互作用提取结构采用了分布式提取腔而非集中式提取腔,增加了输出通道,可以有效提高束-波转换效率,降低提取腔的射频电场。粒子模拟结果显示:二极管电压561 kV,磁场强度0.5 T条件下,保持阴极结构、调制腔及反射器不变时,分别对传统双间隙提取腔、双间隙及三间隙扩展互作用提取腔进行仿真:输出功率分别为2.14、2.22、2.35 GW;分析其提取腔最大射频电场,分别为1.50、1.21、1.10 MV/cm;束波转换效率分别为35.7%、36.9%、39.1%;器件工作频率为12.52 GHz。在三维仿真中,通过改变阴极结构的S参数、设计新的反射器,有效抑制了调制腔TM113模带来的模式竞争,为开展后续实验奠定了基础。
  • 图  1  相对论扩展互作用速调管振荡器示意图

    Figure  1.  Schematic diagram of a relativistic extended interaction klystron oscillator

    1-dual annular cathode, 2-reflective cavity, 3-modulation cavity, 4-extended interaction extraction, 5-collector

    图  2  归一化电场分布示意图和其对应的电子束负载电导

    Figure  2.  Normalized electric field distribution and electron conductivity

    图  3  提取腔工作模式

    Figure  3.  Working mode of extraction cavity

    图  4  射频电场及输出功率对比示意图

    Figure  4.  Schematic diagram of RF electric field and output power comparison

    图  5  提取腔电子束功率下降对比示意图

    Figure  5.  Comparison of power drop of the electron beam in the extraction cavity

    图  6  输出波导耦合环参数分析

    Figure  6.  Parameter analysis of the output waveguide coupling loop

    图  7  磁场及电压的敏感性分析

    Figure  7.  Sensitivity analysis of magnetic fields and voltages

    图  8  三维电场分布

    Figure  8.  Three-dimensional electric field distribution

    图  9  TEM模与TE11模的S参数

    Figure  9.  S parameters of TEM and TE11 modes

    图  10  新反射器TEM模与TE11模的S参数

    Figure  10.  S-parameters of the new reflector TEM mode and TE11 mode

    图  11  横截面轴向电场示意图

    Figure  11.  Schematic diagram of the axial electric field of the cross-section

  • [1] 王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009
    [2] 令钧溥. Ku波段低磁场同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2014

    Ling Junpu. Investigation of a Ku-band coaxial transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2014
    [3] 宋莉莉. Ka波段高功率同轴渡越时间振荡器的研究[D]. 长沙: 国防科学技术大学, 2018

    Song Lili. A Ka-band high power coaxial transit-time oscillator[D]. Changsha: National University of Defense Technology, 2018
    [4] Dang Fangchao, Yang Fuxiang, Ge Xingjun, et al. A Ku-band compact disk-beam relativistic klystron oscillator operating at low guiding magnetic field[J]. IEEE Access, 2021, 9: 84170-84177. doi: 10.1109/ACCESS.2021.3079517
    [5] Ling Junpu, Xu Weili, He Juntao, et al. Experimental research on a gigawatt-class Ku-band coaxial transit-time oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2022, 29: 073105. doi: 10.1063/5.0092985
    [6] 陈代兵, 刘庆想, 何琥, 等. X波段五腔渡越管振荡器的理论与实验研究[J]. 强激光与粒子束, 2005, 17(1):93-98

    Chen Daibing, Liu Qingxiang, He Hu, et al. Theoretical and experimental researches on the X-band five-unit transit-time tube oscillator[J]. High Power Laser and Particle Beams, 2005, 17(1): 93-98
    [7] Gao Xingfu, Song Lili, Zhang Haoran, et al. A novel Ka-band coaxial transit time oscillator with internal extraction[J]. Review of Scientific Instruments, 2021, 92: 094704. doi: 10.1063/5.0062144
    [8] Gao Xingfu, Song Lili, Wang Lei, et al. A high-power relativistic Ka-band millimeter-wave coaxial transit time oscillator with stable repetitive operation at low guiding magnetic field[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(3): 1529-1535. doi: 10.1109/TMTT.2023.3307762
    [9] Ling Junpu, He Juntao, Zhang Jiande, et al. A novel Ku-band relativistic transit-time oscillator with three-cavity extractor and distance-tunable reflector[J]. Physics of Plasmas, 2017, 24: 013103. doi: 10.1063/1.4973329
    [10] Ju Jinchuan, Chen Yinghao, Zhou Yunxiao, et al. A coaxial high power output cavity operating in hybrid TM01-TM02 modes for repetitive operation[J]. IEEE Electron Device Letters, 2021, 42(10): 1551-1554. doi: 10.1109/LED.2021.3108536
    [11] 邓秉方. 低磁场V波段相对论渡越时间振荡器研究[D]. 长沙: 国防科学技术大学, 2021

    Deng Bingfang. Investigation of a V-band relativistic transit-time oscillator with low guiding magnetic field[D]. Changsha: National University of Defense Technology, 2021
    [12] Pasour J, Smithe D, Friedman M. The triaxial klystron[J]. AIP Conference Proceedings, 1999, 474(1): 373-385.
    [13] Pasour J, Smithe D, Ludeking L. X-band triaxial klystron[J]. AIP Conference Proceedings, 2003, 691(1): 141-150.
    [14] Xiao Renzhen, Song Zhimin, Yang Dewen, et al. Efficiency enhancement of a klystron-like relativistic backward wave oscillator with local decompression magnetic field[J]. Physics of Plasmas, 2019, 26: 013104. doi: 10.1063/1.5055582
    [15] 令钧溥, 贺军涛, 张建德, 等. 行波提取型同轴渡越时间振荡器模拟[J]. 国防科技大学学报, 2013, 35(6):120-125 doi: 10.3969/j.issn.1001-2486.2013.06.021

    Ling Junpu, He Juntao, Zhang Jiande, et al. Numerical study of a coaxial transit-time oscillator with travelling-wave output structure[J]. Journal of National University of Defense Technology, 2013, 35(6): 120-125 doi: 10.3969/j.issn.1001-2486.2013.06.021
    [16] Ling Junpu, He Juntao, Zhang Jiande, et al. Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2014, 21: 103108. doi: 10.1063/1.4900408
    [17] Song Lili, He Juntao, Ling Junpu, et al. Experimental research on Ka-band coaxial transit-time oscillator[J]. Physics of Plasmas, 2018, 25: 063107. doi: 10.1063/1.5025908
  • 加载中
图(11)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  34
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-08-19
  • 录用日期:  2024-08-19
  • 网络出版日期:  2024-08-26
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回