留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

12级LTD脉冲源触发支路气体开关击穿特性

降宏瑜 姜晓峰 王志国 孙凤举 魏浩 楼成 邱爱慈

降宏瑜, 姜晓峰, 王志国, 等. 12级LTD脉冲源触发支路气体开关击穿特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240206
引用本文: 降宏瑜, 姜晓峰, 王志国, 等. 12级LTD脉冲源触发支路气体开关击穿特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240206
Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Discharge characteristics of trigger brick gas switches for 12-stage linear transformer driver[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240206
Citation: Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Discharge characteristics of trigger brick gas switches for 12-stage linear transformer driver[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240206

12级LTD脉冲源触发支路气体开关击穿特性

doi: 10.11884/HPLPB202436.240206
基金项目: 国家自然科学基金项目(51790521, 51790523)
详细信息
    作者简介:

    降宏瑜,jianghongyu@nint.ac.cn

  • 中图分类号: TM836;TL51

Discharge characteristics of trigger brick gas switches for 12-stage linear transformer driver

  • 摘要: 12级串联太瓦级直线型变压器驱动源(LTD)采用内置时序触发新方法,对触发支路气体开关提出了低自放概率、低触发阈值、低抖动、触发延时可调的技术要求。介绍了自行研制的基于电阻均压/电晕辅助触发技术的气体开关结构和工作原理;建立了气体开关特性测试平台,完成了12只气体开关的老练和击穿特性测试;开关应用于12级LTD脉冲源级联触发实验,获得了不同工作电压、工作系数下的触发特性参数。实验结果表明:开关工作电压±60~±80 kV,工作系数60%~80%,抖动小于2 ns,500余发实验未发生自放电,实现了12级LTD脉冲源触发支路按理想时序依次导通,触发时序系数0.83~1.17范围内可调。
  • 图  1  开关结构图

    Figure  1.  Diagram of gas switch

    图  2  陶瓷筒外壁均压电阻

    Figure  2.  Resistors for voltage balance on the outer surface of the ceramic tube

    图  3  触发时开关电场分布

    Figure  3.  Electrostatic field plot of the switch when the triggering process is about to start

    图  4  开关特性测试平台电路图

    Figure  4.  Circuit of the switch characteristics test platform

    图  5  典型触发电压和放电电流波形

    Figure  5.  Typical waveform of trigger voltage and discharge current

    图  6  开关触发考核延时

    Figure  6.  Delay time of the switch during triggering test

    图  7  12只开关老练过程中自击穿电压及标准差变化情况

    Figure  7.  Average and standard deviation of self-breakdown voltage during the process of conditioning

    图  8  12只开关自击穿电压及标准差

    Figure  8.  Self-breakdown voltage and standard deviation of 12 switches

    图  9  开关触发特性参数

    Figure  9.  Triggering characteristics of the switches

    图  10  4#和8#开关触发考核延时

    Figure  10.  Delay time of the switches 4# and 8# during triggering test

    图  11  级联触发实验布置

    Figure  11.  Arrangement of cascade trigger experiment

    图  12  触发支路气体开关闭合时序

    Figure  12.  Closing time sequences of 12 trigger brick gas switches

  • [1] McBride R D, Stygar W A, Cuneo M E, et al. A primer on pulsed power and linear transformer drivers for high energy density physics applications[J]. IEEE Transactions on Plasma Science, 2018, 46(11): 3928-3967. doi: 10.1109/TPS.2018.2870099
    [2] Kim A A, Mazarakis M G. The story of the LTD development[J]. IEEE Transactions on Plasma Science, 2020, 48(4): 749-756. doi: 10.1109/TPS.2019.2954210
    [3] Mazarakis M G, Fowler W E, LeChien K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Transactions on Plasma Science, 2010, 38(4): 704-713. doi: 10.1109/TPS.2009.2035318
    [4] 陈林, 王勐, 邹文康, 等. 中物院快脉冲直线型变压器驱动源技术研究进展[J]. 高电压技术, 2015, 41(6):1798-1806

    Chen Lin, Wang Meng, Zou Wenkang, et al. Recent advances in fast linear transformer driver in CAEP[J]. High Voltage Engineering, 2015, 41(6): 1798-1806
    [5] Sinars D B, Sweeney M A, Alexander C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia[J]. Physics of Plasmas, 2020, 27: 070501. doi: 10.1063/5.0007476
    [6] Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. 5.8-GW discharge brick for linear transformer driver[J]. IEEE Transactions on Plasma Science, 2022, 50(11): 4718-4723. doi: 10.1109/TPS.2022.3214374
    [7] 降宏瑜, 姜晓峰, 王志国, 等. LTD多间隙气体开关电场优化及自放率实验研究[J]. 现代应用物理, 2022, 13:040410 doi: 10.12061/j.issn.2095-6223.2022.040410

    Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Electric field optimization and pre-fire rate of LTD multi-gap gas switch[J]. Modern Applied Physics, 2022, 13: 040410 doi: 10.12061/j.issn.2095-6223.2022.040410
    [8] Woodworth J R, Fowler W E, Stoltzfus B S, et al. Compact 810 kA linear transformer driver cavity[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 040401. doi: 10.1103/PhysRevSTAB.14.040401
    [9] Douglass J D, Hutsel B T, Leckbee J J, et al. 100 GW linear transformer driver cavity: design, simulations, and performance[J]. Physical Review Accelerators and Beams, 2018, 21: 120401. doi: 10.1103/PhysRevAccelBeams.21.120401
    [10] Jiang Xiaofeng, Sun Fengju, Wang Zhiguo, et al. A gas-insulated mega-ampere-class linear transformer driver with pluggable bricks[J]. Review of Scientific Instruments, 2020, 91: 123303. doi: 10.1063/5.0028451
    [11] Chen Lin, Zou Wenkang, Zhou Liangji, et al. Development of a fusion-oriented pulsed power module[J]. Physical Review Accelerators and Beams, 2019, 22: 030401. doi: 10.1103/PhysRevAccelBeams.22.030401
    [12] Chen Lin, Zou Wenkang, Jiang Jihao, et al. First results from a 760-GW linear transformer driver module for Z-pinch research[J]. Matter and Radiation at Extremes, 2021, 6: 045901. doi: 10.1063/5.0003346
    [13] 孙凤举, 邱爱慈, 姜晓峰, 等. 基于共用腔体与内置触发的12级串联太瓦级LTD脉冲源[J]. 现代应用物理, 2022, 13:040404 doi: 10.12061/j.issn.2095-6223.2022.040404

    Sun Fengju, Qiu Aici, Jiang Xiaofeng, et al. Twelve-stage linear transformer driver with one terra-watts power on a sharing common cavity shell and internal in-situ triggering method[J]. Modern Applied Physics, 2022, 13: 040404 doi: 10.12061/j.issn.2095-6223.2022.040404
    [14] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Accelerators and Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [15] Zhou Lin, Li Zhenghong, Wang Zhen, et al. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments[J]. Physical Review Accelerators and Beams, 2016, 19: 030401. doi: 10.1103/PhysRevAccelBeams.19.030401
    [16] 孙凤举, 邱爱慈, 魏浩, 等. 快Z箍缩百太瓦级脉冲驱动源概念设计的发展[J]. 现代应用物理, 2017, 8:020702

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of conceptual design on fast Z-pinch pulsed power driver with hundreds of terawatt[J]. Modern Applied Physics, 2017, 8: 020702
    [17] 王志国, 孙凤举, 姜晓峰, 等. FLTD大规模气体开关同步触发技术研究[J]. 现代应用物理, 2022, 13:040407

    Wang Zhiguo, Sun Fengju, Jiang Xiaofeng, et al. Synchronous trigger technology for large-scale gas switches of FLTD[J]. Modern Applied Physics, 2022, 13: 040407
    [18] Jiang Hongyu, Sun Fengju, Cong Peitian, et al. Optimization of self-breakdown and triggering characteristics on multigap gas switch by mounting resistors and capacitors in parallel with switch gaps[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2922-2928. doi: 10.1109/TPS.2019.2911563
    [19] Jiang Xiaofeng, Jiang Hongyu, Wang Zhiguo, et al. A compact low-trigger-threshold multigap gas switch[J]. Review of Scientific Instruments, 2019, 90: 106101. doi: 10.1063/1.5113704
    [20] Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Study on discharge characteristics of six-gap gas switch with corona assisted triggering[J]. Review of Scientific Instruments, 2023, 94: 054704. doi: 10.1063/5.0133944
    [21] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulse power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [22] 刘鹏. 开关闭合时序及分散性对多级感应腔串联FLTD性能影响的研究[D]. 西安: 西安交通大学, 2012

    Liu Peng. Effect of closing sequences of switches and their jitter on the operating performance of multi-cavity-stacked fast linear transformer driver[D]. Xi’an: Xi’an Jiantong University, 2012
  • 加载中
图(12)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-08-26
  • 录用日期:  2024-08-26
  • 网络出版日期:  2024-08-31

目录

    /

    返回文章
    返回