留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快四分幅CMOS电路设计与仿真

蔡厚智 黄晓雅 杨恺知 马友麟 解朝阳 刘进元 向利娟

蔡厚智, 黄晓雅, 杨恺知, 等. 超快四分幅CMOS电路设计与仿真[J]. 强激光与粒子束, 2024, 36: 122002. doi: 10.11884/HPLPB202436.240218
引用本文: 蔡厚智, 黄晓雅, 杨恺知, 等. 超快四分幅CMOS电路设计与仿真[J]. 强激光与粒子束, 2024, 36: 122002. doi: 10.11884/HPLPB202436.240218
Cai Houzhi, Huang Xiaoya, Yang Kaizhi, et al. Design and simulation of ultrafast four-frame CMOS circuits[J]. High Power Laser and Particle Beams, 2024, 36: 122002. doi: 10.11884/HPLPB202436.240218
Citation: Cai Houzhi, Huang Xiaoya, Yang Kaizhi, et al. Design and simulation of ultrafast four-frame CMOS circuits[J]. High Power Laser and Particle Beams, 2024, 36: 122002. doi: 10.11884/HPLPB202436.240218

超快四分幅CMOS电路设计与仿真

doi: 10.11884/HPLPB202436.240218
基金项目: 国家自然科学基金项目(62001301); 广东省基础与应用基础研究基金项目(2024A1515011832); 深圳市科技计划项目(JCYJ20230808105019039, JCYJ20210324095007020, JCYJ20220814133504001); 深圳市光子学与生物光子学重点实验室项目(ZDSYS20210623092006020); 深圳大学2035追求卓越研究计划项目(2023C007); 深圳大学高层次人才引育项目(000001032080)
详细信息
    作者简介:

    蔡厚智,hzcai@szu.edu.cn

    通讯作者:

    向利娟,xianglijuan@szu.edu.cn

  • 中图分类号: TN29;TN43

Design and simulation of ultrafast four-frame CMOS circuits

  • 摘要: 用于惯性约束聚变诊断的传统微通道板(microchannel plate, MCP)选通分幅相机存在体积大、非单视线成像等问题,可用时间分辨率为百皮秒的CMOS芯片代替MCP变像管,将分幅相机芯片化并实现单视线成像。提出了具有8×8×4像素阵列的单视线四分幅超快成像CMOS电路,并对其性能进行了模拟仿真。基于0.18 μm标准CMOS工艺、5晶体管(5T)像素单元结构,设计了四分幅像素单元电路、电压控制延迟器、时钟树以及行列选通电路等。对CMOS电路像素信号进行选通输出并分析,仿真结果表明该CMOS电路可实现单次四分幅成像,每幅图像的时间分辨率为100 ps,相邻两幅图像之间的时间间隔为300 ps,四幅图像像素信号均匀性优于90%。
  • 图  1  超快四分幅CMOS电路结构图

    Figure  1.  Schematic diagram of ultrafast four-frame CMOS circuits

    图  2  5T像素结构单元电路结构图

    Figure  2.  Schematic diagram of 5T pixel unit circuit

    图  3  两组延时控制电路结构图

    Figure  3.  Schematic diagram of two sets of delay and control circuitry

    图  4  电压控制延迟器电路图

    Figure  4.  Schematic diagram of voltage controlled delayer

    图  5  控制电压信号Vctrl与相对延时的关系

    Figure  5.  Relationship between control voltage Vctrl and relative delay

    图  6  四路延时电路原理图

    Figure  6.  Schematic diagram of the 4 delay lines

    图  7  行列选通控制电路

    Figure  7.  Schematic circuity of row and column selector

    图  8  像素信号输出电压与模拟电流关系

    Figure  8.  Relationship between output voltage of pixel and analog current

    图  9  8×8×4 像素矩阵的输出电压信号曲线

    Figure  9.  Curve of voltage output signal of 8×8×4 pixel matrix

    图  10  四分幅单元的曝光时间分辨曲线

    Figure  10.  Curve of exposure time resolution of the four-frame unit

  • [1] Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [2] 蔡厚智, 龙井华, 刘进元, 等. 大面积MCP选通X射线分幅相机的研制[J]. 深圳大学学报理工版, 2013, 30(1):30-34 doi: 10.3724/SP.J.1249.2013.01030

    Cai Houzhi, Long Jinghua, Liu Jinyuan, et al. Investigation of large-format microchannel plate gated X-ray framing camera[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(1): 30-34 doi: 10.3724/SP.J.1249.2013.01030
    [3] Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 2012, 83: 10E116. doi: 10.1063/1.4732849
    [4] Yang Qingguo, Li Zeren, Peng Qixian, et al. K-shell emission X-ray imaging of z-pinch plasmas with a pinhole and a logarithmic spiral crystal[J]. Review of Scientific Instruments, 2011, 82: 093301. doi: 10.1063/1.3634002
    [5] Xiong Gang, Hu Zhimin, Li Hang, et al. One-dimensional space resolving flat-field holographic grating soft X-ray framing camera spectrograph for laser plasma diagnostics[J]. Review of Scientific Instruments, 2011, 82: 043109. doi: 10.1063/1.3579494
    [6] Bell P M, Bradley D K, Kilkenny J D, et al. Radiation hardening of gated X-ray imagers for the National Ignition Facility (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E540. doi: 10.1063/1.3491208
    [7] Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G123. doi: 10.1063/1.5039648
    [8] Berger R, Rathman D D, Tyrrell B M, et al. A 64×64-pixel CMOS test chip for the development of large-format ultra-high-speed snapshot imagers[J]. IEEE Journal of Solid-State Circuits, 2008, 43(9): 1940-1950. doi: 10.1109/JSSC.2008.2001912
    [9] Teruya A T, Vernon S P, Moody J D, et al. Performance of a 512×512 gated CMOS imager with a 250 ps exposure time[C]//Proceedings of SPIE 8505, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion. 2012: 85050F.
    [10] Etoh T G, Nguyen A Q, Kamakura Y, et al. The theoretical highest frame rate of silicon image sensors[J]. Sensors, 2017, 17: 483. doi: 10.3390/s17030483
    [11] Mochizuki F, Kagawa K, Okihara S-I, et al. 6.4 Single-shot 200Mfps 5×3-aperture compressive CMOS imager[C]//2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers. 2015: 1-3.
    [12] Nagel S R, Carpenter A C, Park J, et al. The dilation aided single-line-of sight X-ray camera for the National Ignition Facility: characterization and fielding[J]. Review of Scientific Instruments, 2018, 89: 10G125. doi: 10.1063/1.5038671
    [13] Claus L, England T, Fang L, et al. Design and characterization of an improved, 2 ns, multi-frame imager for the Ultra-Fast X-ray Imager (UXI) program at Sandia National Laboratories[C]//Proceedings of SPIE 10390, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion VI. 2017: 103900A.
    [14] Looker Q, Colombo A P, Kimmel M, et al. X-ray characterization of the Icarus ultrafast X-ray imager[J]. Review of Scientific Instruments, 2020, 91: 043502. doi: 10.1063/5.0004711
    [15] Chen Hui, Golick B, Palmer N, et al. Upgrade of the gated laser entrance hole imager G-LEH-2 on the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 033506. doi: 10.1063/5.0041272
    [16] Looker Q, Kimmel M, Yang Chi, et al. Optical and X-ray characterization of the Daedalus ultrafast X-ray imager[J]. Review of Scientific Instruments, 2023, 94: 113505. doi: 10.1063/5.0171222
    [17] Porter J L, Looker Q, Claus L. Hybrid CMOS detectors for high-speed X-ray imaging[J]. Review of Scientific Instruments, 2023, 94: 061101. doi: 10.1063/5.0138264
    [18] Zhang Fan, Niu Hanben. A 75-ps gated CMOS image sensor with low parasitic light sensitivity[J]. Sensors, 2016, 16: 999. doi: 10.3390/s16070999
    [19] 马红波. 超短快门时间X射线CMOS图像传感器的研究[D]. 重庆: 重庆大学, 2020

    Ma Hongbo. Research on ultra-short shutter time X-ray CMOS image sensor[D]. Chongqing: Chongqing University, 2020
    [20] 田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32:112003 doi: 10.11884/HPLPB202032.200119

    Tian Jinshou. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32: 112003 doi: 10.11884/HPLPB202032.200119
    [21] Cai Houzhi, Liu Jinyuan, Peng Xiang, et al. Large-format microchannel plate gated framing camera[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 677: 14-17.
    [22] 曹柱荣, 袁铮, 陈韬, 等. 神光装置上X射线时空诊断技术概况与展望[J]. 中国科学: 物理学 力学 天文学, 2018, 48: 065206

    Cao Zhurong, Yuan Zheng, Chen Tao, et al. Progress and plans of X-ray temporal and spatial diagnosis technology of Shenguang facilities[J]. SCIENTIA SINICA Physics, Mechanica & Astronomica, 2018, 48: 065206
    [23] 曹柱荣, 王强强, 邓博, 等. 激光聚变极端环境下X光高速摄影技术研究进展[J]. 强激光与粒子束, 2020, 32:112004 doi: 10.11884/HPLPB202032.200099

    Cao Zhurong, Wang Qiangqiang, Deng Bo, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High power Laser and Particle Beams, 2020, 32: 112004 doi: 10.11884/HPLPB202032.200099
    [24] Cai Houzhi, Zhao Xin, Liu Jinyuan, et al. Dilation framing camera with 4 ps resolution[J]. APL Photonics, 2016, 1: 016101. doi: 10.1063/1.4945350
    [25] Cai Houzhi, Fu Wenyong, Wang Dong, et al. Dilation x-ray framing camera and its temporal resolution uniformity[J]. Optics Express, 2019, 27(3): 2817-2827. doi: 10.1364/OE.27.002817
    [26] Cai Houzhi, Fu Wenyong, Wang Dong, et al. Synchronous gating in dilation x-ray detector without 1: 1 image ratio[J]. Optics Express, 2019, 27(9): 12470-12482. doi: 10.1364/OE.27.012470
    [27] Cai Houzhi, Lin Kaixuan, Luo Qiuyan, et al. Two-dimensional ultrafast X-ray Imager for inertial confinement fusion diagnosis[J]. Photonics, 2022, 9(5): 287. doi: 10.3390/photonics9050287
    [28] Cai Houzhi, Luo Qiuyan, Lin Kaixuan, et al. Development of an ultrafast detector and demonstration of its oscillographic application[J]. Nuclear Science and Techniques, 2022, 33(6): 72. doi: 10.1007/s41365-022-01055-5
    [29] Cai Houzhi, Luo Qiuyan, Lin Kaixuan, et al. Ultrafast pulse-dilation framing camera and its application for time-resolved X-ray diagnostic[J]. Nuclear Science and Techniques, 2024, 35(7): 126. doi: 10.1007/s41365-024-01408-2
  • 加载中
图(10)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  42
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-10-29
  • 录用日期:  2024-10-29
  • 网络出版日期:  2024-11-06
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回