留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ辐照对窄线宽光纤激光器的影响及光漂白效果

郑也 孙仕豪 王学锋 于淼 李思源 王军龙

郑也, 孙仕豪, 王学锋, 等. γ辐照对窄线宽光纤激光器的影响及光漂白效果[J]. 强激光与粒子束, 2024, 36: 121002. doi: 10.11884/HPLPB202436.240230
引用本文: 郑也, 孙仕豪, 王学锋, 等. γ辐照对窄线宽光纤激光器的影响及光漂白效果[J]. 强激光与粒子束, 2024, 36: 121002. doi: 10.11884/HPLPB202436.240230
Zheng Ye, Sun Shihao, Wang Xuefeng, et al. Influence of γ-radiation on the output properties of narrow linewidth fiber laser and photo bleaching effect[J]. High Power Laser and Particle Beams, 2024, 36: 121002. doi: 10.11884/HPLPB202436.240230
Citation: Zheng Ye, Sun Shihao, Wang Xuefeng, et al. Influence of γ-radiation on the output properties of narrow linewidth fiber laser and photo bleaching effect[J]. High Power Laser and Particle Beams, 2024, 36: 121002. doi: 10.11884/HPLPB202436.240230

γ辐照对窄线宽光纤激光器的影响及光漂白效果

doi: 10.11884/HPLPB202436.240230
基金项目: 国家自然科学基金企业创新发展联合基金项目(U20B2058),中国航天科技集团有限公司2022年度自主研发项目
详细信息
    作者简介:

    郑 也,zhengye.no1@163.com

    通讯作者:

    王学锋,xuefeng_wang@sina.cn

    王军龙,wjl_casc@126.com

  • 中图分类号: TN012

Influence of γ-radiation on the output properties of narrow linewidth fiber laser and photo bleaching effect

  • 摘要: 采用γ射线对窄线宽光纤激光器的种子源进行辐照试验,辐照总剂量约50 krad(Si),并对比分析了辐照前后输出激光特性,种子源的功率衰减超过70%、增益光纤损耗增加、温度升高明显。对不同辐照剂量下的种子源进行功率放大,结果表明:放大后的激光输出功率、中心波长、3 dB线宽等未发生明显变化,但拉曼抑制比随辐照剂量的增加略微降低。采用793 nm和524 nm激光对辐照后的种子源进行漂白,验证了不同波长漂白光的恢复能力。在同等漂白功率条件下,由于524 nm激光的光子能量更高且对应于掺镱光纤辐致缺陷的主吸收峰,具有更快的漂白速度和更强的漂白能力。漂白试验结果表明,种子源输出功率与793 nm漂白时长呈线性关系、漂白速率约为0.30 W/h,种子源输出功率与524 nm漂白时长大体上呈拉伸指数函数关系、漂白速率约为1.65 W/h。
  • 图  1  窄线宽光纤种子源光路示意图

    Figure  1.  Optical setup of the high power narrow linewidth fiber amplifier

    图  2  γ辐照对窄线宽种子源的影响

    Figure  2.  Influence of γ radiation on the narrow linewidth seed source

    图  3  50 krad(Si) 剂量辐照前后种子源掺镱光纤温度的变化

    Figure  3.  Temperature variation of the Yb-doped fiber before and after 50 krad(Si) radiation

    图  4  辐照后种子源进行放大后的输出特性

    Figure  4.  Amplified laser properties of the irradiated seed source

    图  5  793 nm光漂白实验图

    Figure  5.  The experimental setup of 793 nm photobleaching

    图  6  辐照种子源输出功率与524 nm、793 nm漂白通光的时长关系

    Figure  6.  Irradiated laser source power versus 793 nm and 524 nm bleaching time

  • [1] Tünnermann A, Schreiber T, Röser F, et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38(9): S681-S693. doi: 10.1088/0953-4075/38/9/016
    [2] Limpert J, Röser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545. doi: 10.1109/JSTQE.2007.897182
    [3] 王巍. 光纤陀螺在宇航领域中的应用及发展趋势[J]. 导航与控制, 2020, 19(4/5):18-28

    Wang Wei. Application and development tendency of fiber optic gyroscope in space[J]. Navigation and Control, 2020, 19(4/5): 18-28
    [4] 冯忠伟, 荣刚, 姜爽, 等. 空间光纤传感测量技术应用研究[J]. 宇航计测技术, 2017, 37(2):5-9

    Feng Zhongwei, Rong Gang, Jiang Shuang, et al. Research on fiber sensing measurement for spacecraft[J]. Journal of Astronautic Metrology and Measurement, 2017, 37(2): 5-9
    [5] 郑永超, 赵思思, 李同, 等. 激光空间碎片移除技术发展与展望[J]. 空间碎片研究, 2020, 20(4):1-10

    Zheng Yongchao, Zhao Sisi, Li Tong, et al. Current status and development of laser active debris removal technology[J]. Space Debris Research, 2020, 20(4): 1-10
    [6] Lezius M, Predehl K, Stower W, et al. Radiation induced absorption in rare earth doped optical fibers[J]. IEEE Transactions on Nuclear Science, 2012, 59(2): 425-433. doi: 10.1109/TNS.2011.2178862
    [7] 李奋飞, 周晓燕, 张魁宝, 等. 伽马辐照对掺镱光纤材料特性影响的研究[J]. 强激光与粒子束, 2020, 32:081003 doi: 10.11884/HPLPB202032.200059

    Li Fenfei, Zhou Xiaoyan, Zhang Kuibao, et al. Effect of gamma irradiation on characteristics of Yb-doped fiber materials[J]. High Power Laser and Particle Beams, 2020, 32: 081003 doi: 10.11884/HPLPB202032.200059
    [8] 王博, 曹驰, 邢颍滨, 等. 稀土掺杂光纤辐照性能及抗辐照技术研究现状[J]. 激光与光电子学进展, 2021, 58:1516012

    Wang Bo, Cao Chi, Xing Yingbin, et al. Research status on radiation performance and radiation resistance technology of rare-earth-doped fibers[J]. Laser & Optoelectronics Progress, 2021, 58: 1516012
    [9] 郑也, 马梓洋, 朱嘉婧, 等. 高功率掺镱光纤激光器的辐照影响分析及研究进展[J]. 强激光与粒子束, 2022, 34:041003 doi: 10.11884/HPLPB202234.210414

    Zheng Ye, Ma Ziyang, Zhu Jiajing, et al. Influence of space radiation on properties of high power Yb-doped fiber lasers and their recent progress[J]. High Power Laser and Particle Beams, 2022, 34: 041003 doi: 10.11884/HPLPB202234.210414
    [10] Fox B P, Simmons-Potter K, Kline D A V, et al. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids, 2013, 378: 79-88. doi: 10.1016/j.jnoncrysol.2013.06.009
    [11] Singleton B, Petrosky J, Pochet M, et al. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers[C]//Proceedings of the SPIE, 8982 Optical Components and Materials XI. 2014: 89820S.
    [12] Duchez J B, Mady F, Mebrouk Y, et al. Interplay between photo- and radiation-induced darkening in ytterbium-doped fibers[J]. Optics Letters, 2014, 39(20): 5969-5972. doi: 10.1364/OL.39.005969
    [13] 张汉伟, 王小林, 唐峰, 等. γ射线导致的光子暗化对掺镱光纤激光器效率的影响[J]. 激光与光电子学进展, 2020, 57:011406

    Zhang Hanwei, Wang Xiaolin, Tang Feng, et al. Influence of γ ray induced photo darkening on efficiency of ytterbium-doped fiber laser[J]. Laser & Optoelectronics Progress, 2020, 57: 011406
    [14] Wang Yuying, Gao Cong, Peng Kun, et al. Laser performances of Yb-doped aluminophosphosilicate fiber under γ-radiation[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). 2018: 1-2.
    [15] Xie Fenghou, Shao Chongyun, Wang Meng, et al. Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications[J]. Journal of Lightwave Technology, 2019, 37(4): 1091-1097. doi: 10.1109/JLT.2018.2886253
    [16] 邵冲云, 于春雷, 胡丽丽. 面向空间应用耐辐照有源光纤研究进展[J]. 中国激光, 2020, 47:0500014 doi: 10.3788/CJL202047.0500014

    Shao Chongyun, Yu Chunlei, Hu Lili. Radiation-resistant active fibers for space applications[J]. Chinese Journal of Lasers, 2020, 47: 0500014 doi: 10.3788/CJL202047.0500014
    [17] Chen Yisha, Xu Haozhen, Xing Yinbing, et al. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Optics Express, 2018, 26(16): 20430-20441. doi: 10.1364/OE.26.020430
    [18] Cao Ruiting, Lin Xianfang, Chen Yisha, et al. 532 nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers[J]. Optics Express, 2019, 27(19): 26523-26531. doi: 10.1364/OE.27.026523
    [19] 谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线作用下光纤激光器的功率特性及热效应分析[J]. 中国激光, 2020, 47:0401004 doi: 10.3788/CJL202047.0401004

    Chen Hongwei, Tao Mengmeng, Zhao Haichuan, et al. Power characteristics and thermal effects of the gamma-ray radiated fiber lasers[J]. Chinese Journal of Lasers, 2020, 47: 0401004 doi: 10.3788/CJL202047.0401004
    [20] 谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线辐照增益光纤影响激光器功率特性实验[J]. 中国激光, 2019, 46:1201005 doi: 10.3788/CJL201946.1201005

    Chen Hongwei, Tao Mengmeng, Zhao Haichuan, et al. Experimental investigations on laser power characteristics influenced by gamma-ray irradiated gain fiber[J]. Chinese Journal of Lasers, 2019, 46: 1201005 doi: 10.3788/CJL201946.1201005
    [21] Tao Mengmeng, Chen Hongwei, Feng Guobin, et al. Thermal modeling of high-power Yb-doped fiber lasers with irradiated active fibers[J]. Optics Express, 2020, 28(7): 10104-10123. doi: 10.1364/OE.384980
    [22] Tao Mengmeng, Chen Hongwei, Feng Guobin, et al. Comparisons between high power fiber systems in the presence of radiation induced photodarkening[J]. Laser Physics, 2022, 32: 055101. doi: 10.1088/1555-6611/ac5dc4
    [23] 池俊杰, 姜诗琦, 张琳, 等. 光纤激光器辐照性能实验研究[J]. 激光与光电子学进展, 2018, 55:061406

    Chi Junjie, Jiang Shiqi, Zhang Lin, et al. Experimental study on radiation performance of fiber laser[J]. Laser & Optoelectronics Progress, 2018, 55: 061406
    [24] Wang Xuefeng, Sun Shihao, Zheng Ye, et al. Influence of pre-radiation and photo-bleaching on the Yb-doped fiber laser radiated with gamma-ray[J]. Applied Sciences, 2023, 13: 6146. doi: 10.3390/app13106146
    [25] Manek-Hönninger I, Boullet J, Cardinal T, et al. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Optics Express, 2007, 15(4): 1606-1611. doi: 10.1364/OE.15.001606
    [26] Piccoli R, Gebavi H, Lablonde L, et al. Evidence of photodarkening mitigation in Yb-doped fiber lasers by low power 405 nm radiation[J]. IEEE Photonics Technology Letters, 2014, 26(1): 50-53. doi: 10.1109/LPT.2013.2288994
    [27] Guzman Chávez A D, Kir'yanov A V, Barmenkov Y O, et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 2007, 4(10): 734-739. doi: 10.1002/lapl.200710053
    [28] Piccoli R, Robin T, Brand T, et al. Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection[J]. Optics Express, 2014, 22(7): 7638-7643. doi: 10.1364/OE.22.007638
    [29] Gebavi H, Taccheo S, Mechin D, et al. Photobleaching investigation of photo-darkened fiber using 633 nm irradiation: evidence of color center time evolution and losses mitigation[C]//Proceedings of the SPIE 8610 Fiber Lasers X: Technology, Systems, and Applications. 2013: 86013C.
    [30] Zhao N, Xing Y B, Li J M, et al. 793 nm pump induced photo-bleaching of photo-darkened Yb3+-doped fibers[J]. Optics Express, 2015, 23(19): 25272-25278. doi: 10.1364/OE.23.025272
    [31] Peretti R, Jurdyc A M, Jacquier B, et al. How do traces of thulium can explain photodarkening in Yb doped fibers?[J]. Optics Express, 2010, 18(19): 20455-20460. doi: 10.1364/OE.18.020455
  • 加载中
图(6)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  41
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-10-10
  • 录用日期:  2024-10-10
  • 网络出版日期:  2024-10-23
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回