留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于砷化镓光电导开关的双极性固态脉冲功率源

朱章杰 杨迎香 胡龙 黄嘉 李昕

朱章杰, 杨迎香, 胡龙, 等. 基于砷化镓光电导开关的双极性固态脉冲功率源[J]. 强激光与粒子束, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238
引用本文: 朱章杰, 杨迎香, 胡龙, 等. 基于砷化镓光电导开关的双极性固态脉冲功率源[J]. 强激光与粒子束, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238
Zhu Zhangjie, Yang Yingxiang, Hu Long, et al. Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238
Citation: Zhu Zhangjie, Yang Yingxiang, Hu Long, et al. Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238

基于砷化镓光电导开关的双极性固态脉冲功率源

doi: 10.11884/HPLPB202436.240238
基金项目: 国家自然科学基金项目(52177156)
详细信息
    作者简介:

    朱章杰,3122153061@stu.xjtu.edu.cn

    通讯作者:

    胡 龙,hulong@xjtu.edu.cn

  • 中图分类号: TN78

Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches

  • 摘要: 设计了一种基于砷化镓(GaAs)光电导开关(PCSS)的双极性固态脉冲功率源。通过对两级脉冲形成线(PFL)结构端反射系数的研究,分析了单极性正、负脉冲以及双极性脉冲产生的波过程,并采用PSpice工具开展电路仿真研究。研究了输入端电阻阻抗对脉冲拖尾的影响,提出了脉冲拖尾调制和脉冲宽度调制的方法。基于体结构GaAs PCSS和两级脉冲形成线结构,搭建了电阻隔离的脉冲充电实验平台,采用光路分时触发技术对光电导开关导通时序进行调控。实验结果表明,所研制的双极性固态脉冲功率源在2.5 kV偏压下可产生峰峰值达3.26 kV、脉宽5.6 ns、重复频率1 kHz的双极性纳秒冲激脉冲,验证了将雪崩GaAs PCSS与多级波拓扑结构PFL结合产生双极性纳秒冲激脉冲的可行性。
  • 图  1  结构示意与端反射系数点阵

    Figure  1.  Schematic structure with end-reflection coefficient dot matrix

    图  2  PSpice仿真电路

    Figure  2.  PSpice simulation circuit

    图  3  单极性负脉冲

    Figure  3.  Unipolar negative pulse

    图  4  单极性正脉冲

    Figure  4.  Unipolar positive pulse

    图  5  双极性脉冲

    Figure  5.  Bipolar pulse

    图  6  2级脉冲拖尾调制

    Figure  6.  2-level pulse trailing modulation

    图  7  24级脉冲拖尾调制

    Figure  7.  24-level pulse trailing modulation

    图  8  脉冲宽度调制结构示意

    Figure  8.  Schematic of pulse modulation structure

    图  9  脉冲宽度调制仿真结果

    Figure  9.  Pulse modulation simulation results

    图  10  实验平台实物图

    Figure  10.  The experimental platform

    图  11  实验电路原理图

    Figure  11.  Schematic of experimental circuit

    图  12  器件结构示意图

    Figure  12.  Schematic of device structure

    图  13  单极性负脉冲实验结果

    Figure  13.  Unipolar negative pulse experimental result

    图  14  单极性正脉冲实验结果

    Figure  14.  Unipolar positive pulse experimental result

    图  15  脉冲参数分析

    Figure  15.  Pulse parameter analysis

    图  16  脉冲拖尾调制实验结果

    Figure  16.  Experimental results of pulse trailing modulation

    图  17  脉冲源重频测试

    Figure  17.  Pulse source repetition frequency test records

  • [1] Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
    [2] Liu Kexin, Zhang Xiangyu, Qi Lei, et al. A novel solid-state switch scheme with high voltage utilization efficiency by using modular gapped MOV for DC breakers[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 2502-2507. doi: 10.1109/TPEL.2021.3115254
    [3] 袁建强, 刘宏伟, 马勋, 等. 基于光导开关的固态脉冲功率源及其应用[J]. 高电压技术, 2015, 41(6):1807-1817

    Yuan Jianqiang, Liu Hongwei, Ma Xun, et al. Development and application of solid state pulsed power generators based on photoconductive semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1807-1817
    [4] Yang Yingxiang, Hu Long, Yang Xianghong, et al. Reducing dark-state current for GaAs photoconductive semiconductor switch by ultrafine grinding process[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3565-3569. doi: 10.1109/TED.2024.3384135
    [5] 牛昕玥, 谷炎然, 楚旭, 等. 光导微波源阵列合成时控技术初步研究[J]. 强激光与粒子束, 2024, 36:013005 doi: 10.11884/HPLPB202436.230260

    Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005 doi: 10.11884/HPLPB202436.230260
    [6] Vergne B, Couderc V, Leveque P. A 30-kHz monocycle generator using linear photoconductive switches and a microchip laser[J]. IEEE Photonics Technology Letters, 2008, 20(24): 2132-2134. doi: 10.1109/LPT.2008.2007132
    [7] Zucker O S F. High-power microwave generation with photoconductors[J]. Journal of Lightwave Technology, 2008, 26(15): 2430-2440. doi: 10.1109/JLT.2008.925611
    [8] Zucker O S F. Circuits for digitally synthesizing very long HPM pulses in compact geometry[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 706-710.
    [9] 彭媛媛, 陈文光, 卢杨, 等. 基于Boost闭环控制的恒峰值双极性脉冲发生器的研制[J]. 强激光与粒子束, 2022, 34:115003 doi: 10.11884/HPLPB202234.220179

    Peng Yuanyuan, Chen Wenguang, Lu Yang, et al. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34: 115003 doi: 10.11884/HPLPB202234.220179
    [10] Malviya D, Veerachary M. A boost converter-based high-voltage pulsed-power supply[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5222-5233. doi: 10.1109/TIA.2020.3007396
    [11] Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [12] Kazemi M R, Sugai T, Tokuchi A, et al. Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. doi: 10.1109/TPS.2016.2640315
    [13] Wang Meng, Novac B M, Pécastaing L, et al. Bipolar modulation of the output of a 10-GW pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1971-1977. doi: 10.1109/TPS.2016.2569461
    [14] Efremov A M, Koshelev V I, Kovalchuk B M, et al. High-power sources of ultra-wideband radiation with subnanosecond pulse lengths[J]. Instruments and Experimental Techniques, 2011, 54(1): 70-76. doi: 10.1134/S0020441211010052
    [15] Lee S H, Song S H, Ryoo H J. Current-loop gate-driving circuit for solid-state Marx modulator with fast-rising nanosecond pulses[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8953-8961. doi: 10.1109/TPEL.2021.3051041
    [16] 张现福, 丁恩燕, 陆巍, 等. 高功率超宽带双极脉冲产生技术[J]. 强激光与粒子束, 2010, 22(3):489-493 doi: 10.3788/HPLPB20102203.0489

    Zhang Xianfu, Ding Enyan, Lu Wei, et al. High power ultra-wideband bipolar pulse formers[J]. High Power Laser and Particle Beams, 2010, 22(3): 489-493 doi: 10.3788/HPLPB20102203.0489
    [17] Ma Jiuxin, Yu Liang, Ren Lvheng, et al. Nanosecond pulse generator based on inductive energy storage forming line with impedance matching modulation capability[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 15643-15653. doi: 10.1109/TIE.2024.3387043
    [18] Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507
    [19] Xu Ming, Dong Hangtian, Liu Chun, et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359. doi: 10.1109/TED.2021.3066094
    [20] 樊亚军. 高功率亚纳秒电磁脉冲产生[D]. 西安: 西安交通大学, 2004: 43-47

    Fan Yajun. High power sub-nanosecond electromagnetic pulse generation[D]. Xi'an: Xi'an Jiaotong University, 2004: 43-47
    [21] Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
  • 加载中
图(17)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  45
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-20
  • 修回日期:  2024-10-22
  • 录用日期:  2024-10-22
  • 网络出版日期:  2024-10-26
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回