[1] |
Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
|
[2] |
Liu Kexin, Zhang Xiangyu, Qi Lei, et al. A novel solid-state switch scheme with high voltage utilization efficiency by using modular gapped MOV for DC breakers[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 2502-2507. doi: 10.1109/TPEL.2021.3115254
|
[3] |
袁建强, 刘宏伟, 马勋, 等. 基于光导开关的固态脉冲功率源及其应用[J]. 高电压技术, 2015, 41(6):1807-1817Yuan Jianqiang, Liu Hongwei, Ma Xun, et al. Development and application of solid state pulsed power generators based on photoconductive semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1807-1817
|
[4] |
Yang Yingxiang, Hu Long, Yang Xianghong, et al. Reducing dark-state current for GaAs photoconductive semiconductor switch by ultrafine grinding process[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3565-3569. doi: 10.1109/TED.2024.3384135
|
[5] |
牛昕玥, 谷炎然, 楚旭, 等. 光导微波源阵列合成时控技术初步研究[J]. 强激光与粒子束, 2024, 36:013005 doi: 10.11884/HPLPB202436.230260Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005 doi: 10.11884/HPLPB202436.230260
|
[6] |
Vergne B, Couderc V, Leveque P. A 30-kHz monocycle generator using linear photoconductive switches and a microchip laser[J]. IEEE Photonics Technology Letters, 2008, 20(24): 2132-2134. doi: 10.1109/LPT.2008.2007132
|
[7] |
Zucker O S F. High-power microwave generation with photoconductors[J]. Journal of Lightwave Technology, 2008, 26(15): 2430-2440. doi: 10.1109/JLT.2008.925611
|
[8] |
Zucker O S F. Circuits for digitally synthesizing very long HPM pulses in compact geometry[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 706-710.
|
[9] |
彭媛媛, 陈文光, 卢杨, 等. 基于Boost闭环控制的恒峰值双极性脉冲发生器的研制[J]. 强激光与粒子束, 2022, 34:115003 doi: 10.11884/HPLPB202234.220179Peng Yuanyuan, Chen Wenguang, Lu Yang, et al. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34: 115003 doi: 10.11884/HPLPB202234.220179
|
[10] |
Malviya D, Veerachary M. A boost converter-based high-voltage pulsed-power supply[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5222-5233. doi: 10.1109/TIA.2020.3007396
|
[11] |
Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
|
[12] |
Kazemi M R, Sugai T, Tokuchi A, et al. Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. doi: 10.1109/TPS.2016.2640315
|
[13] |
Wang Meng, Novac B M, Pécastaing L, et al. Bipolar modulation of the output of a 10-GW pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1971-1977. doi: 10.1109/TPS.2016.2569461
|
[14] |
Efremov A M, Koshelev V I, Kovalchuk B M, et al. High-power sources of ultra-wideband radiation with subnanosecond pulse lengths[J]. Instruments and Experimental Techniques, 2011, 54(1): 70-76. doi: 10.1134/S0020441211010052
|
[15] |
Lee S H, Song S H, Ryoo H J. Current-loop gate-driving circuit for solid-state Marx modulator with fast-rising nanosecond pulses[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8953-8961. doi: 10.1109/TPEL.2021.3051041
|
[16] |
张现福, 丁恩燕, 陆巍, 等. 高功率超宽带双极脉冲产生技术[J]. 强激光与粒子束, 2010, 22(3):489-493 doi: 10.3788/HPLPB20102203.0489Zhang Xianfu, Ding Enyan, Lu Wei, et al. High power ultra-wideband bipolar pulse formers[J]. High Power Laser and Particle Beams, 2010, 22(3): 489-493 doi: 10.3788/HPLPB20102203.0489
|
[17] |
Ma Jiuxin, Yu Liang, Ren Lvheng, et al. Nanosecond pulse generator based on inductive energy storage forming line with impedance matching modulation capability[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 15643-15653. doi: 10.1109/TIE.2024.3387043
|
[18] |
Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507
|
[19] |
Xu Ming, Dong Hangtian, Liu Chun, et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359. doi: 10.1109/TED.2021.3066094
|
[20] |
樊亚军. 高功率亚纳秒电磁脉冲产生[D]. 西安: 西安交通大学, 2004: 43-47Fan Yajun. High power sub-nanosecond electromagnetic pulse generation[D]. Xi'an: Xi'an Jiaotong University, 2004: 43-47
|
[21] |
Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
|