留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于砷化镓光电导开关的双极性固态脉冲功率源

朱章杰 杨迎香 胡龙 黄嘉 李昕

陈希普, 罗天泺, 胡智民. Timepix探测器质子响应的蒙特卡罗模拟[J]. 强激光与粒子束, 2025, 37: 022001. doi: 10.11884/HPLPB202537.240199
引用本文: 朱章杰, 杨迎香, 胡龙, 等. 基于砷化镓光电导开关的双极性固态脉冲功率源[J]. 强激光与粒子束, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238
Chen Xipu, Luo Tianluo, Hu Zhimin. Monte Carlo simulation of proton response of Timepix detectors[J]. High Power Laser and Particle Beams, 2025, 37: 022001. doi: 10.11884/HPLPB202537.240199
Citation: Zhu Zhangjie, Yang Yingxiang, Hu Long, et al. Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238

基于砷化镓光电导开关的双极性固态脉冲功率源

doi: 10.11884/HPLPB202436.240238
基金项目: 国家自然科学基金项目(52177156)
详细信息
    作者简介:

    朱章杰,3122153061@stu.xjtu.edu.cn

    通讯作者:

    胡 龙,hulong@xjtu.edu.cn

  • 中图分类号: TN78

Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches

  • 摘要: 设计了一种基于砷化镓(GaAs)光电导开关(PCSS)的双极性固态脉冲功率源。通过对两级脉冲形成线(PFL)结构端反射系数的研究,分析了单极性正、负脉冲以及双极性脉冲产生的波过程,并采用PSpice工具开展电路仿真研究。研究了输入端电阻阻抗对脉冲拖尾的影响,提出了脉冲拖尾调制和脉冲宽度调制的方法。基于体结构GaAs PCSS和两级脉冲形成线结构,搭建了电阻隔离的脉冲充电实验平台,采用光路分时触发技术对光电导开关导通时序进行调控。实验结果表明,所研制的双极性固态脉冲功率源在2.5 kV偏压下可产生峰峰值达3.26 kV、脉宽5.6 ns、重复频率1 kHz的双极性纳秒冲激脉冲,验证了将雪崩GaAs PCSS与多级波拓扑结构PFL结合产生双极性纳秒冲激脉冲的可行性。
  • 随着科学技术的发展,核技术具有零碳排放、能源独立、安全等诸多优势,在人类社会中的地位越来越重要。然而,核辐射事故却为核技术发展迅速蒙上了一层阴影。1986年,苏联切尔诺贝利核电站发生了迄今为止人类历史上最严重的核辐射事故[1]。2011年,日本东北海岸发生了里氏9.0级的强烈地震和海啸,造成了福岛第一核电站的1~3号机组反应堆熔毁[2]。由于反应堆内部高温和高辐射等极端环境,人类无法直接进入进行勘察和处置工作,因此在福岛事故中使用了多种类型和功能的机器人。光纤激光器具有高功率、高光束质量,光束可以远距离柔性传输等优点,可以用于无人区开展激光切割救援等工作[3]。比如Shin等人研究了用10 kW光纤激光器拆除核设施的150 mm厚的厚钢板和大型管道的切割性能[4]。当然,光纤激光器在辐射环境中也会受到影响[5],高能射线会导致增益光纤产生色心等各类缺陷,这些缺陷引起的额外光吸收增加了传输损耗,降低了光纤激光器性能。

    课题组基于光纤激光器存在的自漂白效应,利用60CO辐照源探索不同辐照剂量率下的光纤激光器暗化与自漂白的平衡关系。实验先采用低功率光纤振荡器进行不同辐照剂量率下激光器输出功率演化和去辐照后自漂白研究。使用的光纤激光振荡器实验结构如图1所示,谐振腔由常规商业掺镱光纤(YDF)、高反射光纤光栅(HR-FBG)、低反射光纤光栅(OC-FBG)构成,中心波长为976 nm的泵浦源(LDs)通过前向(2+1)×1泵浦信号合束器(FPSC)注入到谐振腔中,激光经过包层光滤除器(CLS)后由光纤端帽(QBH)扩束输出。

    图  1  光纤激光振荡器实验结构
    Figure  1.  Experimental structure of the fiber laser oscillator

    首先,利用较高辐照剂量率研究在去辐照后的自漂白效应,结果如图2(a)所示。图2(a)的(I)为未辐照阶段,持续时间为680 s,由于水冷机周期性制冷使得功率计温度周期变化导致测试激光功率也存在周期变化,激光器功率起伏为1.44%;需要注意的是,这个是主要功率测量误差导致,并不是激光器本身功率起伏。图2(a)中(II)为辐照阶段,在总辐照时间298 s内,辐照总剂量为14 900 rad,激光器输出功率从150 W下降至105 W。图2(a)的(III)为去辐照后的自漂白阶段,在光纤激光器的泵浦光子与热效应的共同作用下,激光器输出功率从118 W恢复di至145 W,与初始功率相差仅5 W,表明自漂白效应可以较为有效地恢复由于辐照导致的激光功率下降。

    图  2  光纤激光器在辐照环境下的输出特性
    Figure  2.  Output characteristics of the optical fiber laser in an irradiated environment

    然后,为了探索不同剂量率的自漂白与在线辐照相互作用是否可以达到平衡,开展了不同剂量率的对比研究,结果如图2(b)所示。图2(b)中,总辐照剂量为2 400 rad,红色、蓝色曲线分别对应辐照剂量率为50 rad/s、1 rad/s时激光器归一化输出功率演化情况;在辐照剂量率为50 rad/s时,激光输出功率下降了3%;在辐照剂量率1 rad/s时,功率起伏1.22%,考虑到这里的周期性起伏主要由于水冷机周期性制冷导致,可以认为在低辐照剂量率下,光纤激光器自漂白导致的功率提升与辐照导致的功率下降基本达到平衡。

    进一步地,基于图2(b)的实验结果,我们验证了1 kW级光纤激光器中自漂白与辐照平衡的实验现象。在辐照剂量率为0.1 rad/s时,激光器输出激光功率曲线演化如图2(c)所示。从实测功率曲线来看,在总辐照剂量为190 rad的整个辐照过程中,光纤激光器的输出功率都稳定在1 050 W以上,即使考虑前述由于水冷机导致的功率变化,激光器的功率起伏在1.79%以内。如果不考虑水冷机周期性制冷影响,激光器的功率起伏在0.66%以内。

    实验首次验证了在一定辐照剂量率下,光纤激光器自漂白效应导致的激光功率提升可以平衡辐照效应导致的功率下降,为相关场景应用的光纤激光器设计提供了有效支撑。后续,我们将继续深入相关研究,探索不同类别、不同结构激光器辐照与自漂白平衡的机理、阈值和可能的应用。

  • 图  1  结构示意与端反射系数点阵

    Figure  1.  Schematic structure with end-reflection coefficient dot matrix

    图  2  PSpice仿真电路

    Figure  2.  PSpice simulation circuit

    图  3  单极性负脉冲

    Figure  3.  Unipolar negative pulse

    图  4  单极性正脉冲

    Figure  4.  Unipolar positive pulse

    图  5  双极性脉冲

    Figure  5.  Bipolar pulse

    图  6  2级脉冲拖尾调制

    Figure  6.  2-level pulse trailing modulation

    图  7  24级脉冲拖尾调制

    Figure  7.  24-level pulse trailing modulation

    图  8  脉冲宽度调制结构示意

    Figure  8.  Schematic of pulse modulation structure

    图  9  脉冲宽度调制仿真结果

    Figure  9.  Pulse modulation simulation results

    图  10  实验平台实物图

    Figure  10.  The experimental platform

    图  11  实验电路原理图

    Figure  11.  Schematic of experimental circuit

    图  12  器件结构示意图

    Figure  12.  Schematic of device structure

    图  13  单极性负脉冲实验结果

    Figure  13.  Unipolar negative pulse experimental result

    图  14  单极性正脉冲实验结果

    Figure  14.  Unipolar positive pulse experimental result

    图  15  脉冲参数分析

    Figure  15.  Pulse parameter analysis

    图  16  脉冲拖尾调制实验结果

    Figure  16.  Experimental results of pulse trailing modulation

    图  17  脉冲源重频测试

    Figure  17.  Pulse source repetition frequency test records

  • [1] Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
    [2] Liu Kexin, Zhang Xiangyu, Qi Lei, et al. A novel solid-state switch scheme with high voltage utilization efficiency by using modular gapped MOV for DC breakers[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 2502-2507. doi: 10.1109/TPEL.2021.3115254
    [3] 袁建强, 刘宏伟, 马勋, 等. 基于光导开关的固态脉冲功率源及其应用[J]. 高电压技术, 2015, 41(6):1807-1817

    Yuan Jianqiang, Liu Hongwei, Ma Xun, et al. Development and application of solid state pulsed power generators based on photoconductive semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1807-1817
    [4] Yang Yingxiang, Hu Long, Yang Xianghong, et al. Reducing dark-state current for GaAs photoconductive semiconductor switch by ultrafine grinding process[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3565-3569. doi: 10.1109/TED.2024.3384135
    [5] 牛昕玥, 谷炎然, 楚旭, 等. 光导微波源阵列合成时控技术初步研究[J]. 强激光与粒子束, 2024, 36:013005 doi: 10.11884/HPLPB202436.230260

    Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005 doi: 10.11884/HPLPB202436.230260
    [6] Vergne B, Couderc V, Leveque P. A 30-kHz monocycle generator using linear photoconductive switches and a microchip laser[J]. IEEE Photonics Technology Letters, 2008, 20(24): 2132-2134. doi: 10.1109/LPT.2008.2007132
    [7] Zucker O S F. High-power microwave generation with photoconductors[J]. Journal of Lightwave Technology, 2008, 26(15): 2430-2440. doi: 10.1109/JLT.2008.925611
    [8] Zucker O S F. Circuits for digitally synthesizing very long HPM pulses in compact geometry[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 706-710.
    [9] 彭媛媛, 陈文光, 卢杨, 等. 基于Boost闭环控制的恒峰值双极性脉冲发生器的研制[J]. 强激光与粒子束, 2022, 34:115003 doi: 10.11884/HPLPB202234.220179

    Peng Yuanyuan, Chen Wenguang, Lu Yang, et al. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34: 115003 doi: 10.11884/HPLPB202234.220179
    [10] Malviya D, Veerachary M. A boost converter-based high-voltage pulsed-power supply[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5222-5233. doi: 10.1109/TIA.2020.3007396
    [11] Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [12] Kazemi M R, Sugai T, Tokuchi A, et al. Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. doi: 10.1109/TPS.2016.2640315
    [13] Wang Meng, Novac B M, Pécastaing L, et al. Bipolar modulation of the output of a 10-GW pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1971-1977. doi: 10.1109/TPS.2016.2569461
    [14] Efremov A M, Koshelev V I, Kovalchuk B M, et al. High-power sources of ultra-wideband radiation with subnanosecond pulse lengths[J]. Instruments and Experimental Techniques, 2011, 54(1): 70-76. doi: 10.1134/S0020441211010052
    [15] Lee S H, Song S H, Ryoo H J. Current-loop gate-driving circuit for solid-state Marx modulator with fast-rising nanosecond pulses[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8953-8961. doi: 10.1109/TPEL.2021.3051041
    [16] 张现福, 丁恩燕, 陆巍, 等. 高功率超宽带双极脉冲产生技术[J]. 强激光与粒子束, 2010, 22(3):489-493 doi: 10.3788/HPLPB20102203.0489

    Zhang Xianfu, Ding Enyan, Lu Wei, et al. High power ultra-wideband bipolar pulse formers[J]. High Power Laser and Particle Beams, 2010, 22(3): 489-493 doi: 10.3788/HPLPB20102203.0489
    [17] Ma Jiuxin, Yu Liang, Ren Lvheng, et al. Nanosecond pulse generator based on inductive energy storage forming line with impedance matching modulation capability[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 15643-15653. doi: 10.1109/TIE.2024.3387043
    [18] Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507
    [19] Xu Ming, Dong Hangtian, Liu Chun, et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359. doi: 10.1109/TED.2021.3066094
    [20] 樊亚军. 高功率亚纳秒电磁脉冲产生[D]. 西安: 西安交通大学, 2004: 43-47

    Fan Yajun. High power sub-nanosecond electromagnetic pulse generation[D]. Xi'an: Xi'an Jiaotong University, 2004: 43-47
    [21] Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
  • 加载中
图(17)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  83
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-20
  • 修回日期:  2024-10-22
  • 录用日期:  2024-10-22
  • 网络出版日期:  2024-10-26
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回