留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于氚产生率在线测量的小型背靠背锂玻璃探测器

安力 杨杰成 肖军 韩子杰 蒋励 郭海萍

安力, 杨杰成, 肖军, 等. 用于氚产生率在线测量的小型背靠背锂玻璃探测器[J]. 强激光与粒子束, 2024, 36: 106001. doi: 10.11884/HPLPB202436.240256
引用本文: 安力, 杨杰成, 肖军, 等. 用于氚产生率在线测量的小型背靠背锂玻璃探测器[J]. 强激光与粒子束, 2024, 36: 106001. doi: 10.11884/HPLPB202436.240256
An Li, Yang Jiecheng, Xiao Jun, et al. Compact back-to-back lithium glass detector for online tritium production rate measurement[J]. High Power Laser and Particle Beams, 2024, 36: 106001. doi: 10.11884/HPLPB202436.240256
Citation: An Li, Yang Jiecheng, Xiao Jun, et al. Compact back-to-back lithium glass detector for online tritium production rate measurement[J]. High Power Laser and Particle Beams, 2024, 36: 106001. doi: 10.11884/HPLPB202436.240256

用于氚产生率在线测量的小型背靠背锂玻璃探测器

doi: 10.11884/HPLPB202436.240256
详细信息
    作者简介:

    安 力,anli1973@163.com

    通讯作者:

    杨杰成,jiecyang@qq.com

  • 中图分类号: O571.5

Compact back-to-back lithium glass detector for online tritium production rate measurement

  • 摘要: 为了实现强伽马场环境下的造氚率在线测量,研制了小型“背靠背”6Li/7Li玻璃探测器。每块锂玻璃闪烁体的尺寸为3.0 mm×3.0 mm×0.4 mm,闪烁体之间及侧面采用0.5 mm二氧化钛作为反射层,整体尺寸为4.0 mm×4.0 mm×1.3 mm。7Li玻璃探测器测量伽马产生的信号作为6Li玻璃探测器的伽马本底扣除。通过对标准60Co源的伽马射线脉冲幅度谱测量,验证了两个闪烁体对伽马场响应的一致性;在反应堆热中子孔道处和252Cf中子源直照等强伽马环境下测量了脉冲幅度谱,获得的中子伽马信噪比都大于1,表明可以有效扣除伽马本底。验证实验研制的锂玻璃探测器在强伽马场环境下仍能有效甄别伽马,可用于聚变堆和聚变-裂变混合堆实验包层模块内造氚率高精度在线测量。
  • 图  1  不同能量伽马射线在底面积为3.0 mm×3.0 mm、厚度为0.3 mm、0.4 mm和0.5 mm 锂玻璃中的能量沉积

    Figure  1.  Energy deposition of different gamma energy in lithium glass with bottom size of 3.0 mm×3.0 mm and thickness of 0.3 mm, 0.4 mm and 0.5 mm

    图  2  3.0 mm ×3.0 mm ×0.4 mm锂玻璃闪烁体中子和伽马幅度谱

    Figure  2.  Comparison of neutron and gamma amplitude spectra in 3.0 mm ×3.0 mm ×0.4 mm lithium glass scintillators

    图  3  探测器结构示意图

    Figure  3.  Schematic diagram of detector structure

    图  4  锂玻璃闪烁探测器

    Figure  4.  Li-glass scintillation detector

    图  5  造氚率测量系统电子学框图

    572: spectroscopy amplifier; 927: dual multichannel buffer; MCA: multichannel analyzer

    Figure  5.  Layout of the front-end electronics for tritium production rate (TPR) measurement

    图  6  60Co 伽马在锂玻璃中产生的幅度谱

    Figure  6.  Pulse height spectra of lithium glass detector irradiated by 60Co gamma rays

    图  7  252Cf源中子-伽马混合激发下的脉冲高度谱

    Figure  7.  Pulse height spectra excited by neutron-gamma mixed field of 252Cf

    图  8  电子学框图

    Figure  8.  Schematic diagram of the electronic circuit

    572: spectroscopy amplifier; 927: dual multichannel buffer; 556: high voltage power supply; 113: scintillation preamplifier

    图  9  252Cf源直照下的锂玻璃探测器脉冲高度谱

    Figure  9.  Pulse height spectra of lithium glass detector irradiated directly by 252Cf

    图  10  反应堆热中子孔道中子伽马混合场辐照下的脉冲高度谱

    Figure  10.  Pulse height spectra irradiated by neutron-gamma mixing field in thermal neutron channel of reactor

  • [1] 龙河清. 内充气正比计数器氚的绝对测量[J]. 计量学报, 1989, 10(2):144-150

    Long Heqing. Apparatus with an internal gas proportional counter for absolute measurement of tritium[J]. Acta Metrologica Sinica, 1989, 10(2): 144-150
    [2] Sato S, Ochiai K, Verzilov Y, et al. Measurement of tritium production rate in water cooled pebble bed multi-layered blanket mockup by DT neutron irradiation experiment[J]. Nuclear Fusion, 2007, 47(7): 517-521. doi: 10.1088/0029-5515/47/7/003
    [3] Batistoni P, Angelone M, Bettinali L, et al. Neutronics experiment on a helium cooled pebble bed (HCPB) breeder blanket mock-up[J]. Fusion Engineering and Design, 2007, 82(15/24): 2095-2104.
    [4] Verzilov Y, Maekawa F, Oyama Y. A novel method for solving lithium carbonate pellet by binary-acid for tritium production rate measurement by liquid scintillation counting technique[J]. Journal of Nuclear Science and Technology, 1996, 33(5): 390-395. doi: 10.1080/18811248.1996.9731923
    [5] Kudo H, Tanak K, Amano H. Chemical behaviors of tritium produced by the 6Li(n, α)T reaction in lithium oxide[J]. Journal of Inorganic and Nuclear Chemistry, 1978, 40(3): 363-367. doi: 10.1016/0022-1902(78)80406-0
    [6] Pillon M, Angelone M, Batistoni P, et al. Development of on-line tritium monitor based upon artificial diamond for fusion applications[J]. IEEE Transactions on Nuclear Science, 2011, 58(3): 1141-1144. doi: 10.1109/TNS.2011.2134868
    [7] Giaz A, Blasi N, Boiano C, et al. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 825: 51-61.
    [8] Cieślak M J, Gamage K A A, Glover R. Critical review of scintillating crystals for neutron detection[J]. Crystals, 2019, 9: 480. doi: 10.3390/cryst9090480
    [9] Yagi T, Kondo K, Misawa T, et al. Application of a 6LiF small neutron detector with an optical fiber to tritium production rate measurement in D-T neutron fields[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 777-785. doi: 10.1080/18811248.2011.9711760
    [10] 段绍节. 中子学宏观实验[M]. 北京: 国防工业出版社, 2008

    Duan Shaojie. Amacro experiment of neutronics[M]. Beijing: National Defense Industry Press, 2008
    [11] Yamaguchi S, Oyama Y, Nakamura T, et al. An on-line method for tritium production measurement with a pair of lithium-glass scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 254(2): 413-418.
    [12] He Tie, Wang Xinhua, An Li, et al. An online method to measure tritium production rate of fusion-fission hybrid reactor in CAEP[J]. Fusion Engineering and Design, 2018, 137: 43-47. doi: 10.1016/j.fusengdes.2018.08.012
    [13] 汲长松, 李学智. 6Li玻璃闪烁体中子脉冲的等效电子能量[J]. 核电子学与探测技术, 1983, 3(3):62-65,61

    Ji Changsong, Li Xuezhi. The neutron pulse equivalent electron energy of 6Li glass scintillator[J]. Nuclear Electronics & Detection Technology, 1983, 3(3): 62-65,61
    [14] 苏明, 仲启平, 郑玉来, 等. γ全吸收型探测装置中子束流监视器的Geant4模拟[J]. 原子能科学技术, 2009, 43(10):946-950 doi: 10.7538/yzk.2009.43.10.0946

    Su Ming, Zhong Qiping, Zheng Yulai, et al. Geant4 simulation of neutron beam monitor in gamma-ray total absorption facility[J]. Atomic Energy Science and Technology, 2009, 43(10): 946-950 doi: 10.7538/yzk.2009.43.10.0946
    [15] Stetcu I, Chadwick M B, Kawano T, et al. Evaluation of the prompt fission gamma properties for neutron induced fission of 235, 238U and 239Pu[J]. Nuclear Data Sheets, 2020, 163: 261-279. doi: 10.1016/j.nds.2019.12.007
    [16] 王胜, 李航, 罗昕, 等. 研究堆直接引出裂变中子的超视场成像技术研究[J]. 核技术, 2023, 46:030201 doi: 10.11889/j.0253-3219.2023.hjs.46.030201

    Wang Sheng, Li Hang, Luo Xin, et al. Super field of view neutron imaging by fission neutrons elicited from research reactor[J]. Nuclear Techniques, 2023, 46: 030201 doi: 10.11889/j.0253-3219.2023.hjs.46.030201
  • 加载中
图(10)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  21
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-09-28
  • 录用日期:  2024-09-28
  • 网络出版日期:  2024-09-29
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回