Research on channel resistance and thermal effect characteristics of spark gap switch
-
摘要: 针对一种应用于高功率重复频率Marx型脉冲功率源的两电极火花间隙气体开关,开展了火花通道电阻及其热效应特性研究,分析了火花间隙通道电阻热效应的影响因素,研究了重复频率连续工作条件下开关腔体内温度及气压变化。研究结果表明,开关腔体内气压和温度随着工作时间增长呈现先快速增加然后缓慢增长趋于稳定的趋势,脉冲电流幅值的增长对热量沉积的增加效果非常明显。基于中研制的两电极火花间隙开关,在导通峰值电流14.7 kA、脉冲宽度160 ns的条件下连续运行9 000个脉冲,开关通道产生热量约36.6 kJ,在电流导通时间内,通过焦耳热效应计算得到开关导通时间内火花通道电阻平均值约0.12 Ω。Abstract: A study was conducted on the spark channel resistance and thermal effect characteristics of a two-electrode spark gap switch applied to a high-power repetition-rate Marx-type pulse power source. The influencing factors of the thermal effect of the spark gap channel resistance were analyzed, and the temperature and pressure changes inside the switch chamber under continuous repetition-rate working conditions were studied. The research results indicate that the pressure and temperature inside the switch chamber show a trend of rapid increase followed by slow increase and stabilization with the increase of working time. The increase of pulse current has a significant effect on the increase of heat deposition. Based on the two-electrode spark gap switch used in this article, 9 000 pulses were continuously operated under the conditions of peak conduction current of 14.7 kA and pulse width of 160 ns. The discharge channel of the switch generated about 36.6 kJ of heat. During the current conduction time, the average resistance of the spark channel was calculated to be about 0.12 Ω through Joule heating effect.
-
Key words:
- spark gap switch /
- Joule heating effect /
- repetition-rate /
- pulsed power /
- high power
-
表 1 开关试样的热学特性参数
Table 1. Thermal characteristic parameters of the switch
No. pulse current/kA pulse width/ns number of pulses temperature rise of electrode
1/Kaccumulate heat of electrode
1/kJtemperature rise of electrode
2/Kaccumulate heat of electrode
2/kJtemperature rise of insulating shell/K accumulate heat of insulating shell/kJ spark
channel
resistance/Ω1 8.5 200 9 000 26.0 1.22 16.0 1.38 11.0 11.48 0.11 2 10.6 200 9 000 30.6 1.16 17.3 1.49 20.0 20.88 0.12 3 10.5 160 9 000 26.7 1.01 11.8 1.02 17.5 18.27 0.13 4 14.7 160 9 000 44.0 1.43 21.0 1.81 32.0 33.40 0.12 -
[1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040 [2] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201 doi: 10.3788/HPLPB20142603.30201Jiang Weihua. Repetition rate pulsed power technology and its applications: (ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201 [3] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010: 1-20Han Min, Zou Xiaobing, Zhang Guixin. Fundamentals of pulsed powertechnology[M]. Beijing: Tsinghua University Press, 2010: 1-20 [4] 伍友成, 冯传均, 付佳斌, 等. 基于PFN-Marx技术的紧凑型重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055019 doi: 10.11884/HPLPB202436.230354Wu Youcheng, Feng Chuanjun, Fu Jiabin, et al. A compact PFN-Marx repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354 [5] 宋法伦, 金晓, 李飞, 等. 20 GW紧凑Marx型重复频率脉冲驱动源研制进展[J]. 强激光与粒子束, 2017, 29:020101 doi: 10.11884/HPLPB201729.160510Song Falun, Jin Xiao, Li Fei, et al. Progress on 20 GW compact repetitive Marx generator development[J]. High Power Laser and Particle Beams, 2017, 29: 020101 doi: 10.11884/HPLPB201729.160510 [6] 杨莉, 杨实, 来定国, 等. 200 kV/200 kA脉冲源的研制[J]. 强激光与粒子束, 2016, 28:015003 doi: 10.11884/HPLPB201628.015003Yang Li, Yang Shi, Lai Dingguo, et al. Study of the 200 kV/200 kA pulse source[J]. High Power Laser and Particle Beams, 2016, 28: 015003 doi: 10.11884/HPLPB201628.015003 [7] Song Falun, Li Fei, Zhang Beizhen, et al. Recent advances in compact repetitive high-power Marx generators[J]. Laser and Particle Beams, 2019, 37(1): 110-121. doi: 10.1017/S0263034619000272 [8] 张恺烨, 宋法伦, 张北镇, 等. 小型场畸变气体开关的击穿抖动特性[J]. 强激光与粒子束, 2018, 30:105003 doi: 10.11884/HPLPB201830.180069Zhang Kaiye, Song Falun, Zhang Beizhen, et al. Breakdown jitter characteristics of small field distortion gas switch[J]. High Power Laser and Particle Beams, 2018, 30: 105003 doi: 10.11884/HPLPB201830.180069 [9] 谢昌明, 谈效华, 杜涛, 等. 气体火花开关电极烧蚀研究[J]. 强激光与粒子束, 2014, 26:015003 doi: 10.3788/HPLPB20142601.15003Xie Changming, Tan Xiaohua, Du Tao, et al. Electrode erosion research of gas spark gap[J]. High Power Laser and Particle Beams, 2014, 26: 015003 doi: 10.3788/HPLPB20142601.15003 [10] 丛培天, 吴撼宇, 孙铁平, 等. 轨道式多间隙气体开关设计与性能测试[J]. 强激光与粒子束, 2013, 25(4):1059-1062 doi: 10.3788/HPLPB20132504.1059Cong Peitian, Wu Hanyu, Sun Tieping, et al. Design of multi-gap rail gas switch and its performance test[J]. High Power Laser and Particle Beams, 2013, 25(4): 1059-1062 doi: 10.3788/HPLPB20132504.1059 [11] 伍友成, 耿力东, 何泱, 等. 100 kV重频气体开关初步研究及应用[J]. 强激光与粒子束, 2016, 28:025005 doi: 10.11884/HPLPB201628.025005Wu Youcheng, Geng Lidong, He Yang, et al. Investigation and application of 100 kV repetitive gas switches[J]. High Power Laser and Particle Beams, 2016, 28: 025005 doi: 10.11884/HPLPB201628.025005 [12] Song Falun, Li Fei, Zhang Beizhen, et al. A compact and repetitively triggered, field-distortion low-jitter spark-gap switch[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4105-4113. doi: 10.1109/TPS.2019.2926617 [13] 彭建昌. 开关火花电阻对脉冲前沿的影响[J]. 强激光与粒子束, 2011, 23(11):2881-2884 doi: 10.3788/HPLPB20112311.2881Peng Jianchang. Influence of spark resistance on output pulse front edge of gas switch[J]. High Power Laser and Particle Beams, 2011, 23(11): 2881-2884 doi: 10.3788/HPLPB20112311.2881 [14] Engel T G, Donaldson A L, Kristiansen M. The pulsed discharge arc resistance and its functional behavior[J]. IEEE Transactions on Plasma Science, 1989, 17(2): 323-329. doi: 10.1109/27.24643 [15] 孙旭, 苏建仓, 张喜波, 等. 气体火花开关电阻特性[J]. 强激光与粒子束, 2012, 24(4):843-846 doi: 10.3788/HPLPB20122404.0843Sun Xu, Su Jiancang, Zhang Xibo, et al. Resistance properties of gas spark switch[J]. High Power Laser and Particle Beams, 2012, 24(4): 843-846 doi: 10.3788/HPLPB20122404.0843 [16] 童歆, 李晓昂, 赵军平, 等. 气体火花开关放电通道半径及电阻测量[J]. 强激光与粒子束, 2012, 24(3):647-650 doi: 10.3788/HPLPB20122403.0647Tong Xin, Li Xiao’ang, Zhao Junping, et al. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(3): 647-650 doi: 10.3788/HPLPB20122403.0647 [17] 高景明, 刘永贵, 殷毅, 等. 气体火花开关放电的数值模拟[J]. 强激光与粒子束, 2007, 19(6):1039-1043Gao Jingming, Liu Yonggui, Yin Yi, et al. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(6): 1039-1043 [18] 李晓昂, 李志兵, 张乔根, 等. 气体间隙放电火花电阻的光谱诊断[J]. 高电压技术, 2013, 39(6):1390-1395 doi: 10.3969/j.issn.1003-6520.2013.06.015Li Xiao’ang, Li Zhibing, Zhang Qiaogen, et al. Spectroscopic diagnostics on spark resistance of gas discharge[J]. High Voltage Engineering, 2013, 39(6): 1390-1395 doi: 10.3969/j.issn.1003-6520.2013.06.015 [19] Istenic M, Smith I R, Novac B M. Dynamic resistance calculation of nanosecond spark-gaps[C]//2005 IEEE Pulsed Power Conference. 2005: 608-611. [20] 吕治辉, 杨建华, 张建德. 高压火花隙开关中气体冷却的数值模拟[J]. 强激光与粒子束, 2006, 18(4):685-688Lü Zhihui, Yang Jianhua, Zhang Jiande. Simulation of gas temperature decay in spark gap switch[J]. High Power Laser and Particle Beams, 2006, 18(4): 685-688 [21] 殷毅, 刘金亮, 高景明, 等. 气体火花开关高温气体冷却的三维模拟[J]. 高电压技术, 2008, 34(2):382-384,396Yin Yi, Liu Jinliang, Gao Jingming, et al. 3-D simulation of high temperature gas decay of gas spark gap[J]. High Voltage Engineering, 2008, 34(2): 382-384,396 [22] Chen Y, Dickens J, Mankowski J, et al. Effects of gas temperature and gas mixtures on a triggered, sub-ns jitter, 50kV, 100 Hz spark gap[C]//2010 IEEE International Power Modulator and High Voltage Conference. 2010: 145-150. [23] Osmokrovic P, Krstic S, Ljevak M, et al. Influence of GIS parameters on the Topler constant[J]. IEEE Transactions on Electrical Insulation, 1992, 27(2): 214-220. doi: 10.1109/14.135593 [24] Singha S, Thomas M J. Toepler’s spark law in a GIS with compressed SF6-N2 mixture[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(3): 498-505. doi: 10.1109/TDEI.2003.1207478