留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体火花间隙开关通道电阻及热效应特性研究

张北镇 甘延青 李春霞 李飞 金晓 宋法伦

张北镇, 甘延青, 李春霞, 等. 气体火花间隙开关通道电阻及热效应特性研究[J]. 强激光与粒子束, 2024, 36: 115019. doi: 10.11884/HPLPB202436.240311
引用本文: 张北镇, 甘延青, 李春霞, 等. 气体火花间隙开关通道电阻及热效应特性研究[J]. 强激光与粒子束, 2024, 36: 115019. doi: 10.11884/HPLPB202436.240311
Zhang Beizhen, Gan Yanqing, Li Chunxia, et al. Research on channel resistance and thermal effect characteristics of spark gap switch[J]. High Power Laser and Particle Beams, 2024, 36: 115019. doi: 10.11884/HPLPB202436.240311
Citation: Zhang Beizhen, Gan Yanqing, Li Chunxia, et al. Research on channel resistance and thermal effect characteristics of spark gap switch[J]. High Power Laser and Particle Beams, 2024, 36: 115019. doi: 10.11884/HPLPB202436.240311

气体火花间隙开关通道电阻及热效应特性研究

doi: 10.11884/HPLPB202436.240311
基金项目: 国家自然科学基金面上项目(12375205)
详细信息
    作者简介:

    张北镇,99477228@qq.com

    通讯作者:

    宋法伦,songfalun@caep.cn

  • 中图分类号: TM834

Research on channel resistance and thermal effect characteristics of spark gap switch

  • 摘要: 针对一种应用于高功率重复频率Marx型脉冲功率源的两电极火花间隙气体开关,开展了火花通道电阻及其热效应特性研究,分析了火花间隙通道电阻热效应的影响因素,研究了重复频率连续工作条件下开关腔体内温度及气压变化。研究结果表明,开关腔体内气压和温度随着工作时间增长呈现先快速增加然后缓慢增长趋于稳定的趋势,脉冲电流幅值的增长对热量沉积的增加效果非常明显。基于中研制的两电极火花间隙开关,在导通峰值电流14.7 kA、脉冲宽度160 ns的条件下连续运行9 000个脉冲,开关通道产生热量约36.6 kJ,在电流导通时间内,通过焦耳热效应计算得到开关导通时间内火花通道电阻平均值约0.12 Ω。
  • 图  1  两电极火花间隙开关结构图

    Figure  1.  Structure diagram of two electrode spark gap switch

    图  2  实验电路结构框图

    Figure  2.  Structural diagram of experimental circuit

    图  3  典型自击穿波形图

    Figure  3.  Self-breakdown current waveform

    图  4  连续10 min运行中腔内温度与气压的变化

    Figure  4.  Time dependent curves of temperature and pressure inside the switch chamber

    图  5  开关表面温度分布

    Figure  5.  Temperature distribution on the surface of the switch

    表  1  开关试样的热学特性参数

    Table  1.   Thermal characteristic parameters of the switch

    No. pulse current/kA pulse width/ns number of pulses temperature rise of electrode
    1/K
    accumulate heat of electrode
    1/kJ
    temperature rise of electrode
    2/K
    accumulate heat of electrode
    2/kJ
    temperature rise of insulating shell/K accumulate heat of insulating shell/kJ spark
    channel
    resistance/Ω
    1 8.5 200 9 000 26.0 1.22 16.0 1.38 11.0 11.48 0.11
    2 10.6 200 9 000 30.6 1.16 17.3 1.49 20.0 20.88 0.12
    3 10.5 160 9 000 26.7 1.01 11.8 1.02 17.5 18.27 0.13
    4 14.7 160 9 000 44.0 1.43 21.0 1.81 32.0 33.40 0.12
    下载: 导出CSV
  • [1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201 doi: 10.3788/HPLPB20142603.30201

    Jiang Weihua. Repetition rate pulsed power technology and its applications: (ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201 doi: 10.3788/HPLPB20142603.30201
    [3] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010: 1-20

    Han Min, Zou Xiaobing, Zhang Guixin. Fundamentals of pulsed powertechnology[M]. Beijing: Tsinghua University Press, 2010: 1-20
    [4] 伍友成, 冯传均, 付佳斌, 等. 基于PFN-Marx技术的紧凑型重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055019 doi: 10.11884/HPLPB202436.230354

    Wu Youcheng, Feng Chuanjun, Fu Jiabin, et al. A compact PFN-Marx repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2024, 36: 055019 doi: 10.11884/HPLPB202436.230354
    [5] 宋法伦, 金晓, 李飞, 等. 20 GW紧凑Marx型重复频率脉冲驱动源研制进展[J]. 强激光与粒子束, 2017, 29:020101 doi: 10.11884/HPLPB201729.160510

    Song Falun, Jin Xiao, Li Fei, et al. Progress on 20 GW compact repetitive Marx generator development[J]. High Power Laser and Particle Beams, 2017, 29: 020101 doi: 10.11884/HPLPB201729.160510
    [6] 杨莉, 杨实, 来定国, 等. 200 kV/200 kA脉冲源的研制[J]. 强激光与粒子束, 2016, 28:015003 doi: 10.11884/HPLPB201628.015003

    Yang Li, Yang Shi, Lai Dingguo, et al. Study of the 200 kV/200 kA pulse source[J]. High Power Laser and Particle Beams, 2016, 28: 015003 doi: 10.11884/HPLPB201628.015003
    [7] Song Falun, Li Fei, Zhang Beizhen, et al. Recent advances in compact repetitive high-power Marx generators[J]. Laser and Particle Beams, 2019, 37(1): 110-121. doi: 10.1017/S0263034619000272
    [8] 张恺烨, 宋法伦, 张北镇, 等. 小型场畸变气体开关的击穿抖动特性[J]. 强激光与粒子束, 2018, 30:105003 doi: 10.11884/HPLPB201830.180069

    Zhang Kaiye, Song Falun, Zhang Beizhen, et al. Breakdown jitter characteristics of small field distortion gas switch[J]. High Power Laser and Particle Beams, 2018, 30: 105003 doi: 10.11884/HPLPB201830.180069
    [9] 谢昌明, 谈效华, 杜涛, 等. 气体火花开关电极烧蚀研究[J]. 强激光与粒子束, 2014, 26:015003 doi: 10.3788/HPLPB20142601.15003

    Xie Changming, Tan Xiaohua, Du Tao, et al. Electrode erosion research of gas spark gap[J]. High Power Laser and Particle Beams, 2014, 26: 015003 doi: 10.3788/HPLPB20142601.15003
    [10] 丛培天, 吴撼宇, 孙铁平, 等. 轨道式多间隙气体开关设计与性能测试[J]. 强激光与粒子束, 2013, 25(4):1059-1062 doi: 10.3788/HPLPB20132504.1059

    Cong Peitian, Wu Hanyu, Sun Tieping, et al. Design of multi-gap rail gas switch and its performance test[J]. High Power Laser and Particle Beams, 2013, 25(4): 1059-1062 doi: 10.3788/HPLPB20132504.1059
    [11] 伍友成, 耿力东, 何泱, 等. 100 kV重频气体开关初步研究及应用[J]. 强激光与粒子束, 2016, 28:025005 doi: 10.11884/HPLPB201628.025005

    Wu Youcheng, Geng Lidong, He Yang, et al. Investigation and application of 100 kV repetitive gas switches[J]. High Power Laser and Particle Beams, 2016, 28: 025005 doi: 10.11884/HPLPB201628.025005
    [12] Song Falun, Li Fei, Zhang Beizhen, et al. A compact and repetitively triggered, field-distortion low-jitter spark-gap switch[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4105-4113. doi: 10.1109/TPS.2019.2926617
    [13] 彭建昌. 开关火花电阻对脉冲前沿的影响[J]. 强激光与粒子束, 2011, 23(11):2881-2884 doi: 10.3788/HPLPB20112311.2881

    Peng Jianchang. Influence of spark resistance on output pulse front edge of gas switch[J]. High Power Laser and Particle Beams, 2011, 23(11): 2881-2884 doi: 10.3788/HPLPB20112311.2881
    [14] Engel T G, Donaldson A L, Kristiansen M. The pulsed discharge arc resistance and its functional behavior[J]. IEEE Transactions on Plasma Science, 1989, 17(2): 323-329. doi: 10.1109/27.24643
    [15] 孙旭, 苏建仓, 张喜波, 等. 气体火花开关电阻特性[J]. 强激光与粒子束, 2012, 24(4):843-846 doi: 10.3788/HPLPB20122404.0843

    Sun Xu, Su Jiancang, Zhang Xibo, et al. Resistance properties of gas spark switch[J]. High Power Laser and Particle Beams, 2012, 24(4): 843-846 doi: 10.3788/HPLPB20122404.0843
    [16] 童歆, 李晓昂, 赵军平, 等. 气体火花开关放电通道半径及电阻测量[J]. 强激光与粒子束, 2012, 24(3):647-650 doi: 10.3788/HPLPB20122403.0647

    Tong Xin, Li Xiao’ang, Zhao Junping, et al. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(3): 647-650 doi: 10.3788/HPLPB20122403.0647
    [17] 高景明, 刘永贵, 殷毅, 等. 气体火花开关放电的数值模拟[J]. 强激光与粒子束, 2007, 19(6):1039-1043

    Gao Jingming, Liu Yonggui, Yin Yi, et al. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(6): 1039-1043
    [18] 李晓昂, 李志兵, 张乔根, 等. 气体间隙放电火花电阻的光谱诊断[J]. 高电压技术, 2013, 39(6):1390-1395 doi: 10.3969/j.issn.1003-6520.2013.06.015

    Li Xiao’ang, Li Zhibing, Zhang Qiaogen, et al. Spectroscopic diagnostics on spark resistance of gas discharge[J]. High Voltage Engineering, 2013, 39(6): 1390-1395 doi: 10.3969/j.issn.1003-6520.2013.06.015
    [19] Istenic M, Smith I R, Novac B M. Dynamic resistance calculation of nanosecond spark-gaps[C]//2005 IEEE Pulsed Power Conference. 2005: 608-611.
    [20] 吕治辉, 杨建华, 张建德. 高压火花隙开关中气体冷却的数值模拟[J]. 强激光与粒子束, 2006, 18(4):685-688

    Lü Zhihui, Yang Jianhua, Zhang Jiande. Simulation of gas temperature decay in spark gap switch[J]. High Power Laser and Particle Beams, 2006, 18(4): 685-688
    [21] 殷毅, 刘金亮, 高景明, 等. 气体火花开关高温气体冷却的三维模拟[J]. 高电压技术, 2008, 34(2):382-384,396

    Yin Yi, Liu Jinliang, Gao Jingming, et al. 3-D simulation of high temperature gas decay of gas spark gap[J]. High Voltage Engineering, 2008, 34(2): 382-384,396
    [22] Chen Y, Dickens J, Mankowski J, et al. Effects of gas temperature and gas mixtures on a triggered, sub-ns jitter, 50kV, 100 Hz spark gap[C]//2010 IEEE International Power Modulator and High Voltage Conference. 2010: 145-150.
    [23] Osmokrovic P, Krstic S, Ljevak M, et al. Influence of GIS parameters on the Topler constant[J]. IEEE Transactions on Electrical Insulation, 1992, 27(2): 214-220. doi: 10.1109/14.135593
    [24] Singha S, Thomas M J. Toepler’s spark law in a GIS with compressed SF6-N2 mixture[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(3): 498-505. doi: 10.1109/TDEI.2003.1207478
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  38
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-06
  • 修回日期:  2024-10-26
  • 录用日期:  2024-10-26
  • 网络出版日期:  2024-11-01
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回