Calibration of 6Li atomic number of lithium glass detector
-
摘要: 在聚变包层中子学性能的实验检验中,造氚率是重要的测量参数之一,探测器中6Li原子数目作为计算造氚率的归一化因子,是决定测量结果精度的关键因素,必须进行精确标定。对6Li原子数标定原理、实验配置及过程、不确定度量化方法进行具体介绍,并首次在中国绵阳研究堆(CMRR)的M5水平孔道以锗单晶单色器获得32.36 meV中子对小型锂玻璃探测器中6Li原子数进行了标定,不确定度为2.62%。Abstract: In experimental validations of fusion blanket neutronics performance, tritium production rate is one of the most crucial measurement parameters. The number of 6Li atoms in the detector, as a normalization factor for calculating the tritium production rate, is a key factor determining the accuracy of measurement results and must be accurately calibrated. This paper specifically introduces the principles of calibrating the number of 6Li, the experimental setup and procedure, and the methods for quantifying uncertainties. For the first time, the number of 6Li atoms in a small lithium glass detector was calibrated using a germanium monocrystal monochromator to obtain 32.36 meV neutrons at the M5 horizontal channel of the China Mianyang Research Reactor (CMRR), with an uncertainty of 2.62%.
-
表 1 不同散射体对实验的影响
Table 1. Influence of different scatterers on the experiment
No. scatterer 6Li (n,α) T reaction rate 197Au(n,γ) 198Au reaction rate 1 without scatter 5.36×10−23 9.85×10−24 2 cadmium sleeve 5.36×10−23 9.85×10−24 3 cadmium sleeve\sample holder 5.36×10−23 9.85×10−24 4 cadmium sleeve\sample holder\air 4.99×10−23 9.50×10−24 5 cadmium sleeve\sample holder\air\neutron absorbing cavity 4.99×10−23 9.50×10−24 6 cadmium sleeve\sample holder\air\neutron absorbing cavity\3D adjustable platform base 4.99×10−23 9.50×10−24 7 ratio between reaction rates without and with scatterers 93.10% 93.12% 表 2 不确定度列表
Table 2. List of uncertainty items
No. item of uncertainty coefficient relative uncertainty/% 1 tritium production reaction rate nt 1.18 0.41 2 the activation reaction rate nnγ 1.18 1.68 3 counting rate of the beam monitor Nm1 1.18 1.00 4 counting rate of the beam monitor Nm2 1.18 0.02 5 microscopic cross-section of 197Au(n,γ) 198Au σnγ 1.18 0.14 6 microscopic cross-section of 6Li(n, T)4He σT 1.00 0.51 7 number of Au atom N197 1.18 0.24 8 detector cross-sectional area S 0.18 1.00 9 neutron beam profile density uniformity k 1.18 0.80 -
[1] Ma Jimin, An Li, He Tie, et al. Neutronic experiment and analyses of a hybrid tritium breeding blanket mockup for CFETR[J]. Annals of Nuclear Energy, 2021, 161: 108431. doi: 10.1016/j.anucene.2021.108431 [2] He Tie, Wang Xinhua, An Li, et al. An online method to measure tritium production rate of fusion-fission hybrid reactor in CAEP[J]. Fusion Engineering and Design, 2018, 137: 43-47. doi: 10.1016/j.fusengdes.2018.08.012 [3] Yamaguchi S, Oyama Y, Nakamura T, et al. An on-line method for tritium production measurement with a pair of lithium-glass scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 254(2): 413-418. [4] Batistoni P, Angelone M, Carconi P, et al. Neutronics experiments on HCPB and HCLL TBM mock-ups in preparation of nuclear measurements in ITER[J]. Fusion Engineering and Design, 2010, 85(7/9): 1675-1680. [5] 龙河清. 内充气正比计数器氚的绝对测量[J]. 计量学报, 1989, 10(2):144-150Long Heqing. Apparatus with an internal gas proportional counter for absolute measurement of tritium[J]. Acta Metrologica Sinica, 1989, 10(2): 144-150 [6] Sato S, Ochiai K, Verzilov Y, et al. Measurement of tritium production rate in water cooled pebble bed multi-layered blanket mockup by DT neutron irradiation experiment[J]. Nuclear Fusion, 2007, 47(7): 517-521. doi: 10.1088/0029-5515/47/7/003 [7] Batistoni P, Angelone M, Bettinali L, et al. Neutronics experiment on a helium cooled pebble bed (HCPB) breeder blanket mock-up[J]. Fusion Engineering and Design, 2007, 82(15/24): 2095-2104. [8] Verzilov Y, Maekawa F, Oyama Y. A novel method for solving lithium carbonate pellet by binary-acid for tritium production rate measurement by liquid scintillation counting technique[J]. Journal of Nuclear Science and Technology, 1996, 33(5): 390-395. doi: 10.1080/18811248.1996.9731923 [9] Kudo H, Tanak K, Amano H. Chemical behaviors of tritium produced by the 6Li(n, α)T reaction in lithium oxide[J]. Journal of Inorganic and Nuclear Chemistry, 1978, 40(3): 363-367. doi: 10.1016/0022-1902(78)80406-0 [10] Pillon M, Angelone M, Batistoni P, et al. Development of on-line tritium monitor based upon artificial diamond for fusion applications[J]. IEEE Transactions on Nuclear Science, 2011, 58(3): 1141-1144. doi: 10.1109/TNS.2011.2134868 [11] Yagi T, Kondo K, Misawa T, et al. Application of a 6LiF small neutron detector with an optical fiber to tritium production rate measurement in D-T neutron fields[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 777-785. doi: 10.1080/18811248.2011.9711760 [12] 段绍节. 中子学宏观实验[M]. 北京: 国防工业出版社, 2008Duan Shaojie. Amacro experiment of neutronics[M]. Beijing: National Defense Industry Press, 2008 [13] Tong Yanjuan. Chang Song, Li Xuezhi. Determination of lithium in glass by AAS[J]. Glass, 2005, 3: 40-41. [14] Gualdrini G, Bedogni R, Monteventi F. Developing a thermal neutron irradiation system for the calibration of personal dosemeters in terms of H P(10)[J]. Radiation Protection Dosimetry, 2004, 110(1/4): 43-48. [15] Angelone M, Fonnesu N, Colangeli A, et al. Calibration and test of a 6LiF-diamond detector for the HCPB mock-up experiment at JET[J]. Fusion Engineering and Design, 2019, 146: 1755-1758. doi: 10.1016/j.fusengdes.2019.01.158 [16] Finocchiaro P, Cosentino L, Lo Meo S, et al. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 885: 86-90. doi: 10.1016/j.nima.2017.12.066 [17] Qin J G, An L, Lu X X, et al. Note: calibration of majority isotopes for enriched and depleted uranium fission chambers by using the elimination method with fast neutrons[J]. Review of Scientific Instruments, 2018, 89: 116104. doi: 10.1063/1.5052617 [18] Marlies L B, Désirée R, Marcel R, et al. The PTB thermal neutron calibration facility[R]. Physikalisch-Technische Bundesanstalt, Braunschweig, 2018. [19] Xie Lei, Chen Xiping, Fang Leiming, et al. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 31-35.