留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光能量分布对GaN基光导开关导通特性的影响

杨彪 孙逊 李阳凡 沙慧茹 焦健 李德强 张雷 栾崇彪 肖龙飞 陈秀芳 徐现刚

杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240321
引用本文: 杨彪, 孙逊, 李阳凡, 等. 激光能量分布对GaN基光导开关导通特性的影响[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240321
Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy space distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240321
Citation: Yang Biao, Sun Xun, Li Yangfan, et al. Influence of laser spot energy space distribution on the on-state performance of GaN-based photoconductive switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240321

激光能量分布对GaN基光导开关导通特性的影响

doi: 10.11884/HPLPB202436.240321
基金项目: 山东省自然科学基金项目(ZR2022QF059);山东省高等学校青创科技支持计划项目(2022KJ032)
详细信息
    作者简介:

    杨 彪,202214082@mail.sdu.edu.cn

    通讯作者:

    肖龙飞,xiaolongfei@sdu.edu.cn

  • 中图分类号: TN36

Influence of laser spot energy space distribution on the on-state performance of GaN-based photoconductive switches

  • 摘要: 光斑是影响光导开关导通特性的重要因素之一。探索了激光能量分布对光导开关输出特性的影响,分别采用高斯光和平顶光对同一GaN光导开关导通特性进行了对比测试。结果表明,由于平顶光具有更均匀的能量分布,相比于高斯光触发,在相同外加偏置电压(800 V)下,电压转换效率提升了6.8%。在激光能量为500 μJ时的平顶光触发下进行了加压测试,最大峰值输出电压为4550 V,此时输出功率达到414 kW,上升时间为420 ps,下降时间为5 ns,导通电阻为13.7 Ω。
  • 图  1  GaN PCSS的结构示意图(Ti/Al/Ni/Au:20 nm/120 nm/55 nm /45 nm)

    Figure  1.  Schematic of GaN PCSS device (Ti/Al/Ni/Au: 20 nm/120 nm/55 nm/45 nm)

    图  2  激光器脉冲波形图(355 nm、80 ps、500 Hz)及激光触发GaN PCSS的测试电路

    Figure  2.  Pulse width waveform of laser (355 nm, 80 ps, 500 Hz) and circuit diagram of the test-setup for evaluation of the on-state performance of the GaN PCSS

    图  3  高斯光、平顶光轮廓图及沿y轴的能量分布图

    Figure  3.  Profile images and energy distribution along the y aixs of Gaussian beam, falt-top beam

    图  4  800 V充电电压下,不同激光能量的输出电压波形和效率对比,以及500 μJ激光能量下的输出电压波形比较图

    Figure  4.  Output voltage waveform diagrams, efficiency comparison charts at different laser energy levels under an 800 V charging voltage, and a comparative voltage waveform diagram at 500 μJ laser energy

    图  5  相同激光脉冲能量(500 μJ)下的输出电压波形及效率散点图

    Figure  5.  Output voltage waveforms and voltage conversion efficiency scatter plot under same laser pulse energy (500 μJ)

  • [1] Bora M, Voss L F, Grivickas P V, et al. A total internal reflection photoconductive switch[J]. IEEE Electron Device Letters, 2019, 40(5): 734-737. doi: 10.1109/LED.2019.2903926
    [2] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展[J]. 物理学报, 2015, 64:228702 doi: 10.7498/aps.64.228702

    Shi Wei, Yan Zhijin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter[J]. Acta Physic Sinica, 2015, 64: 228702 doi: 10.7498/aps.64.228702
    [3] Liu Xiaorong, Li Song. The effect of photoconductive semiconductor materials in improving the resolution of femtosecond streak camera[J]. IOP Conference Series: Materials Science and Engineering, 2020, 772: 012060. doi: 10.1088/1757-899X/772/1/012060
    [4] 袁建强, 李洪涛, 刘宏伟, 等. 大功率光导开关研究[J]. 强激光与粒子束, 2010, 22(4):791-794 doi: 10.3788/HPLPB20102204.0791

    Yuan Jianqiang, Li Hongtao, Liu Hongwei, et al. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(4): 791-794 doi: 10.3788/HPLPB20102204.0791
    [5] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5): 256-260. doi: 10.1016/j.mre.2017.12.006
    [6] Luan Chongbiao, Li Hongtao. Influence of hot-carriers on the on-state resistance in Si and GaAs photoconductive semiconductor switches working at long pulse width[J]. Chinese Physics Letters, 2020, 37: 044203. doi: 10.1088/0256-307X/37/4/044203
    [7] Rais-Zadeh M, Gokhale V J, Ansari A, et al. Gallium nitride as an electromechanical material[J]. Journal of Microelectromechanical Systems, 2014, 23(6): 1252-1271. doi: 10.1109/JMEMS.2014.2352617
    [8] Mauch D, Dickens J, Kuryatkov V, et al. Evaluation of GaN: Fe as a high voltage photoconductive semiconductor switch for pulsed power applications[C]//Proceedings of 2015 IEEE Pulsed Power Conference. 2015: 1-4.
    [9] Yang Xianghong, Yang Yingxiang, Hu Long, et al. The initial test of a micro-joules trigger, picosecond response, vertical GaN PCSS[J]. IEEE Photonics Technology Letters, 2023, 35(2): 69-72. doi: 10.1109/LPT.2022.3222163
    [10] 袁建强, 刘宏伟, 刘金锋, 等. 不同形状的光斑触发砷化镓光导开关[J]. 强激光与粒子束, 2010, 22(3):557-560 doi: 10.3788/HPLPB20102203.0557

    Yuan Jianqiang, Liu Hongwei, Liu Jinfeng, et al. GaAs photoconductive semiconductor switch triggered by laser spots with different profiles[J]. High Power Laser and Particle Beams, 2010, 22(3): 557-560 doi: 10.3788/HPLPB20102203.0557
    [11] Wei Jinhong, Li Song, Chen Hong, et al. Effects of spot size on the operation mode of GaAs photoconductive semiconductor switch employing extrinsic photoconductivity[J]. Plasma Science and Technology, 2024, 26: 055502. doi: 10.1088/2058-6272/ad1194
    [12] Sun Xun, Xiao Longfei, Luan Chongbiao, et al. Low ON-resistance and high peak voltage transmission efficiency based on high-purity 4H-SiC photoconductive semiconductor switch[J]. IEEE Transactions on Power Electronics, 2024, 39(2): 2013-2019. doi: 10.1109/TPEL.2023.3320124
    [13] Richter E, Beyer F C, Zimmermann F, et al. Growth and properties of intentionally carbon-doped GaN layers[J]. Crystal Research and Technology, 2020, 55: 1900129. doi: 10.1002/crat.201900129
    [14] Kern W. The evolution of silicon wafer cleaning technology[J]. Journal of the Electrochemical Society, 1990, 137(6): 1887-1892. doi: 10.1149/1.2086825
    [15] Yang Xianghong, Hu Long, Dang Xin, et al. Low specific contact resistivity of 10−3Ω·cm2 for Ti/Al/Ni/Au multilayer metals on SI-GaN: Fe substrate[J]. IEEE Transactions on Electron Devices, 2022, 69(10): 5773-5779. doi: 10.1109/TED.2022.3201784
    [16] He Ting, Shu Ting, Yang Hanwu, et al. Effect of donor-acceptor compensation on transient performance of vanadium-doped SiC photoconductive switches using 532-nm laser[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4275-4282. doi: 10.1109/TED.2024.3397628
  • 加载中
图(5)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-12
  • 修回日期:  2024-10-07
  • 录用日期:  2024-09-26
  • 网络出版日期:  2024-10-15

目录

    /

    返回文章
    返回