留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

15 kV爆炸开关触头开断过程研究

叶记飞 李华 李振瀚 宋执权 傅鹏

叶记飞, 李华, 李振瀚, 等. 15 kV爆炸开关触头开断过程研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240328
引用本文: 叶记飞, 李华, 李振瀚, 等. 15 kV爆炸开关触头开断过程研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.240328
Ye Jifei, Li Hua, Li Zhenhan, et al. Research on breaking process of 15 kV pyrobreaker[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240328
Citation: Ye Jifei, Li Hua, Li Zhenhan, et al. Research on breaking process of 15 kV pyrobreaker[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.240328

15 kV爆炸开关触头开断过程研究

doi: 10.11884/HPLPB202436.240328
基金项目: 国家重大科技基础设施建设“十三五”规划项目(2018-000052-73-01-001228)
详细信息
    作者简介:

    叶记飞,jifei.ye@ipp.ac.cn

  • 中图分类号: TM561

Research on breaking process of 15 kV pyrobreaker

  • 摘要: 超导托卡马克装置通过极高的磁场来约束高温等离子体,以实现可控核聚变反应。为了保证超导磁体的安全运行,失超保护系统中需要爆炸开关实现至关重要的后备保护。对15 kV爆炸开关中最关键的电流触头进行了建模,针对爆炸及触头开断过程进行了数值分析,计算了触头分断所需要的爆轰压力,以及爆炸产生的压力分布规律。通过试验验证了数值模拟的准确性,这为爆炸开关的理论设计提供了基础。
  • 图  1  失超保护系统电路示意图

    Figure  1.  Circuit topology of quench protection system

    图  2  爆炸开关结构

    Figure  2.  Structure of pyrobreaker

    图  3  电流触头仿真模型

    Figure  3.  Current contact simulation model

    图  4  不同时刻冲击波传播位置图

    Figure  4.  Shock wave propagation map at different time instances

    图  5  电流触头断裂过程图

    Figure  5.  Current contact breakage process diagram

    图  6  单元压力时程曲线

    Figure  6.  Element pressure time history curve

    图  7  爆炸开关空载试验图

    Figure  7.  Pyrobreaker no-load test diagram

    图  8  电流触头分断图

    Figure  8.  Current contact fragmentation diagram

    图  9  传感器试验波形图

    Figure  9.  Sensor test waveform diagram

    表  1  RDX材料参数

    Table  1.   Material parameters of RDX

    ρ/(g/cm3) D/(cm/µs) Pc-j/GPa A/GPa B/GPa R1 R2 ω E
    1.63 0.839 34 581 6.8 4.1 1.0 0.35 9.0
    下载: 导出CSV

    表  2  铜的材料参数

    Table  2.   Material parameters of copper

    ρ/(g/cm3) G0/GPa A/MPa B/MPa n C m
    8.96 47.7 900 292 0.31 0.025 1
    下载: 导出CSV

    表  3  钢的材料参数

    Table  3.   Material parameters of steel

    material C/(m/s) S1 S2 S3 γ0 a
    steel 4569 1.49 0 0 2.17 0.46
    下载: 导出CSV

    表  4  环氧材料参数

    Table  4.   Material parameters of epoxy

    parameters data parameters data parameters data parameters data
    E11 45.5 GPa Xc 680 MPa υ31 0.206 m1 4.0
    E22 12.5 GPa Yc 250 MPa υ23 0.206 m2 4.0
    E33 12.5 GPa Zt 82 MPa As 2.5 m3 4.0
    G12 1.38 GPa Zc 242 MPa Bs 0.9 m4 4.0
    G23 1.38 GPa S12 75 MPa Cs 0.37 m5 4.0
    G31 1.38 GPa S23 58 MPa Am 1.85 m6 4.0
    Xt 1.28 GPa S31 58 MPa Bm 0.5 m7 4.0
    Yt 90 MPa υ12 0.25 Cm 1.3 Sc 1.2
    下载: 导出CSV

    表  5  试验压力与数值模拟对比

    Table  5.   Comparison of test pressure and numerical simulation

    No. simulation pressure/MPa test pressure/MPa error/%
    1 210 218.41 3.85
    2 152.5 155.42 1.88
    下载: 导出CSV
  • [1] 李华, 宋执权, 汪舒生, 等. 核聚变装置中直流保护开关的研究进展[J]. 中国电机工程学报, 2016, 36(s1):233-239

    Li Hua, Song Zhiquan, Wang Shusheng, et al. Study on DC protection switch for superconducting coils in magnetic confinement fusion device[J]. Proceedings of the CSEE, 2016, 36(s1): 233-239
    [2] Wu Mingfu, Liu Zixi, Zhang Tao, et al. Experimental study of double tearing mode on EAST Tokamak[J]. Plasma Science and Technology, 2020, 22: 025102. doi: 10.1088/2058-6272/ab4f8a
    [3] Yang Wenjun, Li Guoqiang, Gao Xiang, et al. Stability analysis of alfvén eigenmodes in the experimental advanced superconducting Tokamak[J]. Fusion Science and Technology, 2023, 79(5): 528-536. doi: 10.1080/15361055.2022.2151279
    [4] 宋执权, 傅鹏, 汤伦军, 等. EAST极向场电源失超保护系统的设计及模拟实验[J]. 核聚变与等离子体物理, 2007, 27(1):28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006

    Song Zhiquan, Fu Peng, Tang Lunjun, et al. Design of the quench protection system of the EAST PFPS and its simulation[J]. Nuclear Fusion and Plasma Physics, 2007, 27(1): 28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006
    [5] Tang Cunwen, Song Zhiquan, Li Chuan, et al. Computational investigation on the explosively actuated switch utilized in quenching protection system[J]. Fusion Engineering and Design, 2021, 163: 112157. doi: 10.1016/j.fusengdes.2020.112157
    [6] Tang Cunwen, Li Hua, Song Zhiquan, et al. Design and characterisation of the high-current DC breaker driven by explosive[J]. High Voltage, 2023, 8(3): 466-476. doi: 10.1049/hve2.12286
    [7] Kamada Y, Barabaschi P, Ishida S, et al. Progress of the JT-60SA project[J]. Nuclear Fusion, 2013, 53: 104010. doi: 10.1088/0029-5515/53/10/104010
    [8] Heshmati M, Zamani J, Mozafari A. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation[J]. Materialwissenschaft Und Werkstofftechnik, 2016, 47(7): 623-634. doi: 10.1002/mawe.201600510
    [9] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42:053203 doi: 10.11883/bzycj-2021-0206

    Wen Yanbo, Hu Liangliang, Qin Jian, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion and Shock Waves, 2022, 42: 053203 doi: 10.11883/bzycj-2021-0206
    [10] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020)[J]. 爆炸与冲击, 2021, 41:121401 doi: 10.11883/bzycj-2021-0113

    Yu Tongxi, Zhu Ling, Xu Jun. Progress in structural impact dynamics during 2010−2020[J]. Explosion and Shock Waves, 2021, 41: 121401 doi: 10.11883/bzycj-2021-0113
    [11] Javier C, Galuska M, Papa M, et al. Underwater explosive bubble interaction with an adjacent submerged structure[J]. Journal of Fluids and Structures, 2021, 100: 103189. doi: 10.1016/j.jfluidstructs.2020.103189
    [12] 翟希梅, 王永辉. 爆炸荷载下网壳结构的动力响应及泄爆措施[J]. 爆炸与冲击, 2012, 32(4):404-410 doi: 10.3969/j.issn.1001-1455.2012.04.010

    Zhai Ximei, Wang Yonghui. Dynamic response and explosion relief of reticulated shell under blast loading[J]. Explosion and Shock Waves, 2012, 32(4): 404-410 doi: 10.3969/j.issn.1001-1455.2012.04.010
    [13] Souers P C, Minich R. Cylinder test correction for copper work hardening and spall[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 238-245. doi: 10.1002/prep.201400135
    [14] 林大超, 白春华, 张奇. 空气中爆炸时爆炸波的超压函数[J]. 爆炸与冲击, 2001, 21(1):41-46 doi: 10.3321/j.issn:1001-1455.2001.01.009

    Lin Dachao, Bai Chunhua, Zhang Qi. Overpressure functions of blast waves for explosions in air[J]. Explosion and Shock Waves, 2001, 21(1): 41-46 doi: 10.3321/j.issn:1001-1455.2001.01.009
    [15] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响[J]. 物理学报, 2013, 62:164601 doi: 10.7498/aps.62.164601

    Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62: 164601 doi: 10.7498/aps.62.164601
    [16] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110: 033513. doi: 10.1063/1.3607294
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-10-14
  • 录用日期:  2024-10-06
  • 网络出版日期:  2024-10-19

目录

    /

    返回文章
    返回