Review of study on conduction characteristics of vacuum switch based on cold cathode materials
-
摘要: 对于空间环境应用的真空开关,可以省去人工环境下的开关密封结构和附属抽真空等设备,有效减轻体积重量,且具有真空环境天成、无需密封、绝缘强度高、恢复速度快等优点,在空间环境中有巨大的应用潜力。首先对国内外的真空开关导通特性研究进展进行了系统介绍,分析了多种类型真空开关的工作特性,评述其优缺点,并对自击穿型沿面闪络真空开关和触发型真空开关的导通机制进行了总结分析;其次分析了关于冷阴极材料的应用研究;然后概括介绍了本课题组在冷阴极真空开关方面的工作进展;最后探讨了冷阴极真空开关的发展趋势,为脉冲功率驱动源的空间环境应用奠定技术基础。Abstract: For vacuum switches used in space environments, it is possible to eliminate the sealing structures and ancillary vacuum pumping equipment required in artificial environments, effectively reducing the volume and weight. They have the inherent advantages of a vacuum environment, no need for sealing, high insulation strength, and fast recovery speed, making them highly potential for application in space environments. Firstly, it is systemically introduced the research advances of vacuum switches domestic and overseas. And it is analyzed and compared the operating characteristics of various types of vacuum switches. Especially, the emphasis is put on the summary of the conduction mechanism of self-breakdown flashover vacuum switch and trigger vacuum switch. Secondly, it is analyzed the application research of cold cathode materials. Thirdly, it is summarized the research advances on cold cathode vacuum switch in National University of Defense Technology. Finally, it is discussed the development trend of the cold cathode vacuum switch. Research results lay a solid technical foundation for the application of pulse power driving source in space environment.
-
Key words:
- pulsed power /
- vacuum switch /
- cold cathode material /
- conduction characteristics /
- surface flashover
-
表 1 多类型真空开关工作特性
Table 1. Operation characteristics of multi-types of vacuum switches
switch type surface flashover TVS field-breakdown TVS multi-rod TVS laser TVS self-breakdown surface flashover VS initial plasma generation surface flashover trigger electrode surface flashover target material field enhancement working voltage tens of kV zero to tens of kV tens of kV several to tens of kV hundreds of kV working current tens to hundreds of kA tens of kA hundreds of kA tens to hundreds of kA several kA trigger condition low voltage high voltage high energy high energy high voltage trigger delay and jitter a dozen ns tens of ns several μs several ns sub-nanosecond advantages stable triggering;
low triggering voltage;
wide working voltage range;
large through-currentlong life;
large through-current;
wide working voltage rangelarge through-current;
repetitive triggering;
long lifeshort trigger delay (ns);
stable triggering;
wide working voltage rangehigh working voltage;
long life;
simple structure;
fast rising edgedisadvantages metal vapor deposition;
trigger ablation;
short trigger lifehigh trigger energy;
large trigger delay and dispersion (μs)high trigger energy;
large trigger delay and dispersion;
large volumemetal vapor deposition;
high stability requirementslarge voltage dispersion;
dielectric degradation reduces working voltage -
[1] Mesyats G A. Pulsed power[M]. New York: Kluwer Academic/Plenum Publishers, 2005. [2] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005 [3] 张明, 周亮, 栾小燕, 等. 面向脉冲功率技术需求的伪火花开关技术[J]. 真空电子技术, 2021(1):1-9Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Pseudo-spark switch technologies for pulsed power sources[J]. Vacuum Electronics, 2021(1): 1-9 [4] 赵征, 周亮, 栾小燕, 等. 新型小体积伪火花开关研制[J]. 强激光与粒子束, 2023, 35:035002 doi: 10.11884/HPLPB202335.220290Zhao Zheng, Zhou Liang, Luan Xiaoyan, et al. Development of miniature pseudo-spark switch[J]. High Power Laser and Particle Beams, 2023, 35: 035002 doi: 10.11884/HPLPB202335.220290 [5] 丁闻婧, 冯进军, 张明, 等. 辉光放电触发重频伪火花开关研究[J]. 强激光与粒子束, 2024, 36:055012 doi: 10.11884/HPLPB202436.240036Ding Wenjing, Feng Jinjun, Zhang Ming, et al. Study on glow discharge triggered repetitive frequency pseudospark switch[J]. High Power Laser and Particle Beams, 2024, 36: 055012 doi: 10.11884/HPLPB202436.240036 [6] Baez A. Design considerations for high power spacecraft electrical systems[R]. E-661248, 2012. [7] Cunningham K, Carr J, Lewis B. MSFC electrical power systems for cubesats[R]. M18-7079, 2018. [8] 董华军, 吴延清, 向川, 等. 真空开关关键技术及发展趋势的分析[J]. 电气应用, 2008, 27(13):10-13Dong Huajun, Wu Yanqing, Xiang Chuan, et al. Analysis of key technologies and development trends of vacuum switches[J]. Electrotechnical Application, 2008, 27(13): 10-13 [9] 夏胜国, 董曼玲, 何俊佳, 等. 场击穿式TVS时延特性的测量与分析[J]. 高电压技术, 2007, 33(9):167-170,178 doi: 10.3969/j.issn.1003-6520.2007.09.037Xia Shengguo, Dong Manling, He Junjia, et al. Measurement and analysis of time delay characteristics of a field-breakdown triggered vacuum switches[J]. High Voltage Engineering, 2007, 33(9): 167-170,178 doi: 10.3969/j.issn.1003-6520.2007.09.037 [10] 周正阳, 廖敏夫, 董华军, 等. 基于电子发射原理的场击穿型真空触发开关[J]. 电气应用, 2010, 29(17):76-80Zhou Zhengyang, Liao Minfu, Dong Huajun, et al. Vacuum trigger switch based on electron emission principle[J]. Electrotechnical Application, 2010, 29(17): 76-80 [11] Boxman R I. Triggering mechanisms in triggered vacuum gaps[J]. IEEE Transactions on Electron Devices, 1997, 24(2): 122-128. [12] Lafferty J M. Triggered vacuum gaps[J]. Proceedings of the IEEE, 1966, 54(1): 23-32. doi: 10.1109/PROC.1966.4570 [13] Kamakshaiah S, Rau R S N. Delay characteristics of a simple triggered vacuum gap[J]. Journal of Physics D: Applied Physics, 1975, 8: 1426. doi: 10.1088/0022-3727/8/12/014 [14] Govinda Raju G R, Hackam R, Benson F A. Breakdown mechanisms and electrical properties of triggered vacuum gaps[J]. Journal of Applied Physics, 1976, 47(4): 1310-1317. doi: 10.1063/1.322832 [15] 姚学玲, 陈景亮, 孙伟. 沿面闪络真空开关触发特性的实验研究[J]. 高电压技术, 2010, 36(2):340-344Yao Xueling, Chen Jingliang, Sun Wei. Experimental research on triggering characteristics of surface flashover triggered vacuum switch[J]. High Voltage Engineering, 2010, 36(2): 340-344 [16] Chen Y G, Dethlefsen R, Crumley R, et al. High-coulomb triggered vacuum switch[C]//Proceedings of the Ninth IEEE International Pulsed Power Conference. 1993: 938. [17] Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum triggered switching devices[J]. IEEE Transactions on Magnetics, 2003, 39(1): 406-409. doi: 10.1109/TMAG.2002.807671 [18] Zhou Zhengyang, Liao Minfu, Zou Jiyan, et al. Time delay of a field-breakdown triggered vacuum switch with flat electrodes[J]. Instruments and Experimental Techniques, 2011, 54(6): 803-807. doi: 10.1134/S0020441211060108 [19] Zhou Zhengyang, Duan Xiongying, Liao Minfu, et al. Operational characteristics of a field-breakdown triggered vacuum switch[J]. IEEE Transactions on Magnetics, 2009, 45(1): 564-567. doi: 10.1109/TMAG.2008.2008830 [20] Zhou Zhengyang, Zhao Liang, Sun Weizhen, et al. Arc development of triggered vacuum switch with multi-rod electrode system[J]. Instruments and Experimental Techniques, 2016, 59(1): 84-90. doi: 10.1134/S0020441215050152 [21] 王延召. 多棒极型触发真空开关的关键问题及应用研究[D]. 武汉: 华中科技大学, 2014Wang Yanzhao. Research on the key problems and the applications of the triggered vacuum switch with multi-rod electrode system[D]. Wuhan: Huazhong University of Science and Technology, 2014 [22] Makarevich A A, Rodichkin V A. A vacuum spark gap with laser firing[J]. Instrum Exp Tech, 1973: 1716-1720. [23] Harley L M, Barnes G A. Low-jitter, high-voltage, infrared, laser-triggered, vacuum switch[C]//Proceedings of the Eighth IEEE International Conference on Pulsed Power. 1991: 900-903. [24] Sullivan D L, Kovaleski S D, Hutsel B T, et al. Study of laser target triggering for spark gap switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 956-960. doi: 10.1109/TDEI.2009.5211839 [25] 王珏, 邵建设, 严萍, 等. 激光触发真空沿面闪络开关的初步实验研究[J]. 强激光与粒子束, 2007, 19(6):1027-1030Wang Jue, Shao Jianshe, Yan Ping, et al. Experimental study on laser triggered surface flashover switch in vacuum[J]. High Power Laser and Particle Beams, 2007, 19(6): 1027-1030 [26] 潘如政, 王珏, 严萍, 等. 真空中激光触发脉冲电压下绝缘材料闪络特性[J]. 强激光与粒子束, 2010, 22(3):671-674 doi: 10.3788/HPLPB20102203.0671Pan Ruzheng, Wang Jue, Yan Ping, et al. Laser-triggered flashover characteristics of insulations in vacuum condition under pulsed voltage[J]. High Power Laser and Particle Beams, 2010, 22(3): 671-674 doi: 10.3788/HPLPB20102203.0671 [27] 陈伟民. 场击穿型激光触发真空开关的设计及研究[D]. 武汉: 华中科技大学, 2013: 5-15Chen Weimin. The design and research of a field-breakdown laser triggered vacuum switch[D]. Wuhan: Huazhong University of Science and Technology, 2013: 5-15 [28] 蒋西平. 激光触发真空开关导通特性研究[D]. 大连: 大连理工大学, 2016: 5-25Jiang Xiping. Research on conduction characteristics of a laser triggered vacuum switch[D]. Dalian: Dalian University of Technology, 2016: 5-25 [29] Smith I D. Test of a vacuum/dielectric surface flashover switch[R]. UCID-18553, 1980. [30] Zeng Bo, Su Jiancang, Cheng Jie, et al. A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research[J]. Review of Scientific Instruments, 2015, 86: 043302. doi: 10.1063/1.4916988 [31] Zeng Bo, Su Jiancang, Zhang Xibo, et al. Investigation into the operating characteristics of fused quartz vacuum surface flashover switch[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 1999-2004. doi: 10.1109/TPS.2015.2389859 [32] Krasik Y E, Dunaevsky A, Krokhmal A, et al. Emission properties of different cathodes at E≤105V/cm[J]. Journal of Applied Physics, 2001, 89(4): 2379-2399. doi: 10.1063/1.1337924 [33] Garate E, Mcwilliams R D, Voss D E, et al. Novel cathode for field-emission applications[J]. Review of Scientific Instruments, 1995, 66(3): 2528-2532. doi: 10.1063/1.1146504 [34] Liu Lie, Li Limin, Zhang Xiaoping, et al. Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode[J]. IEEE Transactions on Plasma Science, 2007, 35(2): 361-368. doi: 10.1109/TPS.2007.893266 [35] Liu Lie, Li Limin, Wen Jianchun, et al. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams[J]. Review of Scientific Instruments, 2009, 80: 023303. doi: 10.1063/1.3086728 [36] Li Ankun, Fan Yuwei. Preliminary experimental study of a carbon fiber array cathode[J]. Journal of Applied Physics, 2016, 120: 065105. doi: 10.1063/1.4960699 [37] Bugaev S P, Litvinov E A, Mesyats G A, et al. Explosive emission of electrons[J]. Soviet Physics Uspekhi, 1975, 18: 51. doi: 10.1070/PU1975v018n01ABEH004693 [38] Miller R B. Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes[J]. Journal of Applied Physics, 1998, 84(7): 3880-3889. doi: 10.1063/1.368567 [39] Adler R J, Kiuttu G F, Simpkins B E, et al. Improved electron emission by use of a cloth fiber cathode[J]. Review of Scientific Instruments, 1985, 56(5): 766-767. doi: 10.1063/1.1138169 [40] Friedman M, Myers M, Hegeler F, et al. Emission of an intense large area electron beam from a slab of porous dielectric[J]. Journal of Applied Physics, 2004, 96(12): 7714-7722. doi: 10.1063/1.1815050 [41] Krasik Y E, Gleizer J Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber(velvet) cathodes[J]. Journal of Applied Physics, 2005, 98: 093308. doi: 10.1063/1.2126788 [42] 夏连胜, 张篁, 杨兴林, 等. 碳纤维阴极的场致发射特性实验研究[J]. 强激光与粒子束, 2007, 19(4):685-688Xia Liansheng, Zhang Huang, Yang Xinglin, et al. Experimental research on field emission of carbon fibe[J]. High Power Laser and Particle Beams, 2007, 19(4): 685-688 [43] 夏连胜. 天鹅绒阴极强流多脉冲发射特性研究[D]. 绵阳: 中国工程物理研究院, 2005: 4-10Xia Liansheng. Study on high current multi-pulse emission characteristics of velvet cathode[D]. Mianyang: China Academy of Engineering Physics, 2005: 4-10 [44] 刘列, 李立民, 文建春, 等. 碳纤维阴极的电子发射机制[J]. 强激光与粒子束, 2005, 17(8):1205-1209Liu Lie, Li Limin, Wen Jianchun, et al. Electron emission mechanism of carbon fiber cathode[J]. High Power Laser and Particle Beams, 2005, 17(8): 1205-1209 [45] 邓潘, 张军, 葛行军, 等. 碳纤维阴极发射均匀性的实验研究[J]. 强激光与粒子束, 2005, 17(11):1721-1724Deng Pan, Zhang Jun, Ge Xingjun, et al. Experimental investigation on emission uniformity of carbon fiber cathode[J]. High Power Laser and Particle Beams, 2005, 17(11): 1721-1724 [46] 李安昆. 大面积均匀发射、低出气率、长寿命碳纤维阵列阴极及其应用研究[D]. 长沙: 国防科技大学, 2021Li Ankun. Research on large- area, uniform emission, low outgassing rate, and long lifetime carbon fiber array cathode and its application[D]. Changsha: National University of Defense Technology, 2021