Research on radiometric calibration method and measurement of whole layer atmospheric transmittance in short wave infrared band
-
摘要: 利用傅里叶红外光谱仪开展了短波红外波段上辐射定标方法和连续整层大气透过率的测量研究。由于在短波红外波段(0.9~2.2 μm)上存在多个强吸收波段,导致常用的Langley法存在较大误差,且改进的Langley法对于强吸收波段的定标处理也无法得到较好的结果。为满足短波红外全波段上整层大气透过率的高精度测量要求,提出了一种改进的大气透过率计算方法,先利用Langley定标法得到非吸收波段的仪器定标值和响应函数K再结合仪器定标值与大气顶层太阳辐照度的关系确定仪器定标值,得到短波红外全波段上整层大气透过率。利用该方法得到的0.9~2.2 μm波段上整层连续大气透过率的结果,与中等分辨率大气辐射传输计算模型软件CART计算结果对比,相对误差最大为6.3%,平均误差小于2.5%。Abstract: This article employs Fourier transform infrared spectroscopy to investigate radiometric calibration methods and the measurement of continuous atmospheric transmittance across the shortwave infrared band. The presence of multiple strong absorption bands within the shortwave infrared spectrum (0.9−2.2 μm) leads to significant errors in the commonly used Langley method, and even the improved Langley method struggles to yield accurate results for the calibration of these strong absorption bands. To fulfill the high-precision measurement demands for atmospheric transmittance across the entire shortwave infrared band, this paper introduces an enhanced method for calculating atmospheric transmittance. Initially, the Langley calibration technique is utilized to determine the instrument calibration value and response function K in the non-absorption band. Subsequently, the instrument response function in the absorption band is derived by interpolating the wavelength based on the instrument response function calibrated in the non-absorption band. Ultimately, the instrument calibration value is established by correlating it with the solar irradiance at the atmosphere’s top, thereby obtaining the atmospheric transmittance across the entire shortwave infrared band. Compared to results calculated by the medium-resolution atmospheric radiative transfer model software CART, the atmospheric transmittance values obtained using this method within the 0.9−2.2 μm band exhibit an average error of less than 2.5%.
-
表 1 EM27/SUN 参数
Table 1. EM27/SUN parameters
instrument insititude spectral range/cm−1 resolution/cm−1 measurement time/min sample scans Bruker EM27/SUN KIT 4000 ~9000 0.5 1 10 表 2 选定8个波段Langley法定标结果
Table 2. Selected 8 bands’ Langley calibration results
No. band/μm slope intercept correlation coefficient 1 0.86 −0.194 −4.837 − 0.99063 2 0.88 −0.207 −4.381 − 0.99063 3 1.01 −0.219 −3.566 − 0.99063 4 1.05 −0.169 −3.404 − 0.99063 5 1.08 −0.179 −3.266 − 0.99063 6 1.22 −0.193 −2.676 − 0.99063 7 1.29 −0.218 −2.655 − 0.99063 8 1.65 −0.118 −2.392 − 0.99637 -
[1] 陈新民, 李建玉, 魏合理, 等. 用太阳光度计获取激光波段大气透过率[J]. 红外与激光工程, 2019, 48:S209002Chen Xinmin, Li Jianyu, Wei Heli, et al. Extraction of atmospheric transmittance of laser waveband using sun-photometer[J]. Infrared and Laser Engineering, 2019, 48: S209002 [2] 曹振松, 黄印博, 魏合理, 等. 整层大气透过率获取方法研究进展及相关问题探讨[J]. 红外与激光工程, 2019, 48:1203004 doi: 10.3788/IRLA201948.1203004Cao Zhensong, Huang Yinbo, Wei Heli, et al. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48: 1203004 doi: 10.3788/IRLA201948.1203004 [3] 詹杰, 郭瑞鹏, 饶瑞中. 可见到近红外波段整层大气透过率的测量[J]. 大气与环境光学学报, 2006, 1(3):179-183 doi: 10.3969/j.issn.1673-6141.2006.03.005Zhan Jie, Guo Ruipeng, Rao Ruizhong. Measurement of atmospheric transmittance in the visible and near-infrared[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(3): 179-183 doi: 10.3969/j.issn.1673-6141.2006.03.005 [4] Manjul S S, Verma S D. Ground-based multitemporal measurements of global solar spectral irradiance and estimation of atmospheric transmittance[C]//Proceedings of SPIE 1814, Optical Sensors. 1992: 175-182. [5] Kambezidis H D, Adamopoulos A D, Zevgolis D. Spectral aerosol transmittance in the ultraviolet and visible spectra in Athens, Greece[J]. Pure and Applied Geophysics, 2005, 162(3): 625-647. doi: 10.1007/s00024-004-2625-z [6] 范伟, 王毅, 饶瑞中. 可见到近红外波段整层大气光谱透过率的测量研究[J]. 光子学报, 2006, 35(3):402-407Fan Wei, Wang Yi, Rao Ruizhong. Measurement of the atmospheric transmittance from visible to near infrared bands[J]. Acta Photonica Sinica, 2006, 35(3): 402-407 [7] 吴欣, 戴聪明, 武鹏飞, 等. 机载大气红外高分辨率光谱的信息量分析[J]. 红外与激光工程, 2019, 48:1104004 doi: 10.3788/IRLA201948.1104004Wu Xin, Dai Congming, Wu Pengfei, et al. Information analysis of airborne atmosphere infrared high resolution spectral[J]. Infrared and Laser Engineering, 2019, 48: 1104004 doi: 10.3788/IRLA201948.1104004 [8] Roney P L, Reid F, Theriault J M. Transmission window near 2400 cm−1: an experimental and modeling study[J]. Applied Optics, 1991, 30(15): 1995-2004. doi: 10.1364/AO.30.001995 [9] Sicard M, Thome K J, Crowther B G, et al. Shortwave infrared spectroradiometer for atmospheric transmittance measurements[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(1): 174-183. doi: 10.1175/1520-0426(1998)015<0174:SISFAT>2.0.CO;2 [10] 汤笑笑, 李建玉, 徐刚, 等. 光谱型太阳光度计混合定标方法[J]. 光谱学与光谱分析, 2023, 43(8):2536-2542Tang Xiaoxiao, Li Jianyu, Xu Gang, et al. Mixing calibration method for spectral sun-photometer[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2536-2542 [11] Paine S, Blundell R, Papa D C, et al. A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths[J]. Publications of the Astronomical Society of the Pacific, 2000, 112(767): 108-118. doi: 10.1086/316497 [12] 张艳娜, 刘恩超, 李新, 等. 可见-近红外波段太阳光谱辐照度仪的辐射定标方法研究[J]. 应用光学, 2014, 35(1):11-16Zhang Yanna, Liu Enchao, Li Xin, et al. Calibration method of VNIR solar irradiance spectroradiometer[J]. Journal of Applied Optics, 2014, 35(1): 11-16 [13] 张艳娜, 郑小兵, 李新, 等. 溯源于低温绝对辐射计的太阳光谱辐照度仪定标方法研究[J]. 应用光学, 2015, 36(4):572-579 doi: 10.5768/JAO201536.0403003Zhang Yanna, Zheng Xiaobing, Li Xin, et al. Calibrating method traced to cryogenic absolute radiometer for solar irradiance spectroradiometer[J]. Journal of Applied Optics, 2015, 36(4): 572-579 doi: 10.5768/JAO201536.0403003 [14] 伽丽丽, 戴聪明, 徐青山, 等. 近红外大气吸收波段太阳辐射计定标[J]. 遥感学报, 2012, 16(5):928-938 doi: 10.11834/jrs.20121248Qie Lili, Dai Congming, Xu Qingshan, et al. Calibration of near-infrared absorption band for a sun-photometer[J]. Journal of Remote Sensing, 2012, 16(5): 928-938 doi: 10.11834/jrs.20121248