留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贫化铀的等离子氮化处理

龙重 薛亚斌 徐庆东 罗丽珠 陆雷 胡殷 刘柯钊

龙重, 薛亚斌, 徐庆东, 等. 贫化铀的等离子氮化处理[J]. 强激光与粒子束, 2024, 36: 126002. doi: 10.11884/HPLPB202436.240359
引用本文: 龙重, 薛亚斌, 徐庆东, 等. 贫化铀的等离子氮化处理[J]. 强激光与粒子束, 2024, 36: 126002. doi: 10.11884/HPLPB202436.240359
Long Zhong, Xue Yabin, Xu Qingdong, et al. Plasma nitriding of depleted uranium[J]. High Power Laser and Particle Beams, 2024, 36: 126002. doi: 10.11884/HPLPB202436.240359
Citation: Long Zhong, Xue Yabin, Xu Qingdong, et al. Plasma nitriding of depleted uranium[J]. High Power Laser and Particle Beams, 2024, 36: 126002. doi: 10.11884/HPLPB202436.240359

贫化铀的等离子氮化处理

doi: 10.11884/HPLPB202436.240359
基金项目: 国家自然科学基金项目(U2230205)
详细信息
    作者简介:

    龙 重,long2001@163.com

  • 中图分类号: TG178

Plasma nitriding of depleted uranium

  • 摘要: 为了提高贫化铀表面耐腐蚀性能,利用三种等离子氮化技术(等离子源离子注入Plasma Source Ion Implantation——PSII、辉光放电等离子氮化Glow Discharge Plasma Nitriding——GDPN、空心阴极等离子氮化Hollow Cathode Plasma Nitriding——HCPN)在贫化铀表面制备了氮化层。通过多种材料分析手段对氮化层成分、结构、化学状态进行了分析。三种氮化层中的氮化物都以α-U2N3为主,由于金属铀与氧的亲和力较强,三种等离子氮化过程都不同程度地引入了氧杂质。PSII可以突破热力学平衡,将部分氧化物转化为氮化物。GDPN和HCPN则通过表面反应和热扩散形成氮化物层。HCPN技术对控制氧杂质有一定优势,可以显著降低氮化层中氧杂质含量。湿热腐蚀和电化学测试表明,等离子氮化可以明显提升贫化铀的抗腐蚀性能,HCPN和GDPN的提升程度要优于PSII,而HCPN技术最优。本文的研究结果可为活性金属的等离子氮化处理提供参考。
  • 图  1  三种等离子氮化装置的示意图

    Figure  1.  Schematic of three plasma nitriding devices

    图  2  三种氮化样品的XRD数据

    Figure  2.  XRD data of nitride samples

    图  3  三种氮化样品的AES数据

    Figure  3.  AES data of nitride samples

    图  4  三种氮化样品的XPS数据

    Figure  4.  XPS data of three nitride samples

    图  5  PSII样品和GDPN样品湿热腐蚀前后的AES分析数据

    Figure  5.  AES data of PSII sample and GDPN sample before and after wet heat corrosion

    图  6  HCPN样品、GDPN样品、PSII样品、未处理样品的电化学极化曲线

    Figure  6.  Electrochemical polarization curves of HCPNsample, GDPN sample, PSII sample, and untreated sample

    表  1  实验材料杂质

    Table  1.   Impurities of experimental materials

    experimental
    material
    impurity content/10−6
    carbon nitrogen oxygen H2O others
    uranium 200 45 <150
    nitrogen <3 <3 <5 <1
    下载: 导出CSV

    表  2  主要工艺参数

    Table  2.   Process parameters

    process base
    presure/Pa
    voltage/
    kV
    frequence/
    kHz
    pulse
    width/μs
    current density/
    (mA·cm−2)
    process
    time/h
    vacuum
    temperature/℃
    PSII 8×10−4 50 0.4 40 ~0.1 2 220
    GDPN 3×10−4 0.9 60 1.5 ~1 2 350
    HCPN 3×10−4 0.6 60 0.5 ~20 2 130
    下载: 导出CSV
  • [1] Colmenares C A. The oxidation of thorium, uranium, and plutonium[J]. Progress in Solid State Chemistry, 1975, 9: 139-239. doi: 10.1016/0079-6786(75)90016-3
    [2] Mattox D M, Bland R D. Aluminum coating of uranium reactor parts for corrosion protection[J]. Journal of Nuclear Materials, 1967, 21(3): 349-352. doi: 10.1016/0022-3115(67)90189-4
    [3] Chang F, Levy M, Jackman B, et al. Assessment of corrosion-resistant coatings for a depleted uranium-0.75 titanium alloy[J]. Surface and Coatings Technology, 1991, 48(1): 31-39. doi: 10.1016/0257-8972(91)90126-H
    [4] Chang F C, Levy M, Huie R, et al. Adhesion and corrosion behavior of Al-Zn and TiN/Ti/TiN coatings on a DU-0.75wt. % Ti alloy[J]. Surface and Coatings Technology, 1991, 49(1/3): 87-96.
    [5] Musket R G. Applications of ion implantation for modifying the interactions between metals and hydrogen gas[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1989, 40/41: 591-594.
    [6] Crusset D, Bernard F, Sciora E, et al. Modification of the hydriding kinetics of U-0.2wt. %V alloy using ion implantations[J]. Journal of Alloys and Compounds, 1994, 204(1/2): 71-77.
    [7] Arkush R, Mintz M H, Shamir N. Passivation of uranium towards air corrosion by N2+ and C+ ion implantation[J]. Journal of Nuclear Materials, 2000, 281(2/3): 182-190.
    [8] Arkush R, Brill M, Zalkind S, et al. The effect of N2+ and C+ implantation on uranium hydride nucleation and growth kinetics[J]. Journal of Alloys and Compounds, 2002, 330/332: 472-475. doi: 10.1016/S0925-8388(01)01537-7
    [9] Arkush R, Mintz M H, Kimmel G, et al. Long-term amorphisation of C+ and N2+ implanted layers on a uranium surface[J]. Journal of Alloys and Compounds, 2002, 340(1/2): 122-126.
    [10] Raveh A, Arkush R, Zalkind S, et al. Passivation of uranium metal by radio-frequency plasma nitriding against gas phase (H2, H2O) corrosion[J]. Surface and Coatings Technology, 1996, 82(1/2): 38-41.
    [11] Yeamans C B, Silva G W C, Cerefice G S, et al. Oxidative ammonolysis of uranium(IV) fluorides to uranium(VI) nitride[J]. Journal of Nuclear Materials, 2008, 374(1/2): 75-78.
    [12] Silva G W C, Yeamans C B, Ma Longzhou, et al. Microscopic characterization of uranium nitrides synthesized by oxidative ammonolysis of uranium tetrafluoride[J]. Chemistry of Materials, 2008, 20(9): 3076-3084. doi: 10.1021/cm7033646
    [13] Black L, Miserque F, Gouder T, et al. Preparation and photoelectron spectroscopy study of UN x thin films[J]. Journal of Alloys and Compounds, 2001, 315(1/2): 36-41.
    [14] Mändl S, Gerlach J W, Assmann W, et al. Phase formation and diffusion after nitrogen PIII in molybdenum[J]. Surface and Coatings Technology, 2003, 174/175: 1238-1242. doi: 10.1016/S0257-8972(03)00457-2
    [15] Möller W, Parascandola S, Kruse O, et al. Plasma-immersion ion implantation for diffusive treatment[J]. Surface and Coatings Technology, 1999, 116/199: 1-10.
    [16] Liu Kezhao, Wang Xiaofang, Liu Jing, et al. Nitride layers on uranium surfaces[J]. Progress in Surface Science, 2018, 93(3): 47-84. doi: 10.1016/j.progsurf.2018.08.002
    [17] Long Zhong, Luo Lizhu, Lu Yong, et al. Study on the electronic structure of α-U2N3 by XPS and first principles[J]. Journal of Alloys and Compounds, 2016, 664: 745-749. doi: 10.1016/j.jallcom.2016.01.013
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  39
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-13
  • 修回日期:  2024-10-25
  • 录用日期:  2024-10-25
  • 网络出版日期:  2024-10-29
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回