[1] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[2] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
[3] |
Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170-177. doi: 10.1112/plms/s1-14.1.170
|
[4] |
Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 201(1065): 192-196.
|
[5] |
Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
|
[6] |
Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104.
|
[7] |
Wang Lifeng, Ye Wenhua, He Xiantu, et al. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions[J]. Science China Physics, Mechanics & Astronomy, 2017, 60: 055201.
|
[8] |
Regan S P, Goncharov V N, Igumenshchev I V, et al. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA[J]. Physical Review Letters, 2016, 117: 025001. doi: 10.1103/PhysRevLett.117.025001
|
[9] |
Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
|
[10] |
吴俊峰, 缪文勇, 王立锋, 等. 神光II装置上间接驱动烧蚀瑞利-泰勒不稳定性实验分析[J]. 强激光与粒子束, 2015, 27:032009 doi: 10.3788/HPLPB20152703.32009Wu Junfeng, Miao Wenyong, Wang Lifeng, et al. Experimental analysis of indirect-drive ablative Rayleigh-Taylor instability on Shenguang II[J]. High Power Laser and Particle Beams, 2015, 27: 032009 doi: 10.3788/HPLPB20152703.32009
|
[11] |
王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001 doi: 10.11884/HPLPB202133.200173Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202133.200173
|
[12] |
旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34:082203 doi: 10.11884/HPLPB202234.220133Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203 doi: 10.11884/HPLPB202234.220133
|
[13] |
Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
|
[14] |
Wang Lifeng, Wu Junfeng, Guo Hongyu, et al. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder[J]. Physics of Plasmas, 2015, 22: 082702. doi: 10.1063/1.4928088
|
[15] |
Wang Lifeng, Guo Hongyu, Wu Junfeng, et al. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer[J]. Physics of Plasmas, 2014, 21: 122710. doi: 10.1063/1.4904363
|
[16] |
袁永腾, 缪文勇, 丁永坤, 等. 平面调制靶瑞利-泰勒不稳定性初步研究[J]. 强激光与粒子束, 2007, 19(5):781-784Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Preliminary experimental study of Rayleigh-Taylor instability of surface perturbation target[J]. High Power Laser and Particle Beams, 2007, 19(5): 781-784
|
[17] |
袁永腾, 缪文勇, 丁永坤, 等. X光背光观测烧蚀面扰动引起内界面扰动的增长[J]. 强激光与粒子束, 2007, 19(4):625-628Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Observation of growth of rear surface perturbation caused by ablation surface[J]. High Power Laser and Particle Beams, 2007, 19(4): 625-628
|
[18] |
缪文勇, 袁永腾, 丁永坤, 等. 神光II装置上辐射驱动瑞利-泰勒不稳定性实验[J]. 强激光与粒子束, 2015, 27:032016 doi: 10.3788/HPLPB20152703.32016Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation-driven Rayleigh-Taylor instability on the Shenguang-II laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016 doi: 10.3788/HPLPB20152703.32016
|
[19] |
丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081 doi: 10.3788/HPLPB20132512.3077Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress on physical experiment and target diagnostics in Research Center of Laser Fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
|
[20] |
Bell G I. Taylor instability on cylinders and spheres in the small amplitude approximation[R]. LA-1321, 1951.
|
[21] |
Plesset M S, Zwick S A. The growth of vapor bubbles in superheated liquids[J]. Journal of Applied Physics, 1954, 25(4): 493-500. doi: 10.1063/1.1721668
|
[22] |
Epstein R. On the bell–plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability[J]. Physics of Plasmas, 2004, 11(11): 5114-5124. doi: 10.1063/1.1790496
|
[23] |
李波, 张占文, 何智兵, 等. 激光惯性约束聚变靶靶丸制备与表征[J]. 强激光与粒子束, 2015, 27:032024 doi: 10.3788/HPLPB20152703.32024Li Bo, Zhang Zhanwen, He Zhibing, et al. Preparation and characterization of inertial confinement fusion capsules[J]. High Power Laser and Particle Beams, 2015, 27: 032024 doi: 10.3788/HPLPB20152703.32024
|
[24] |
Mikaelian K O. Rayleigh-taylor and richtmyer-meshkov instabilities and mixing in stratified cylindrical shells[J]. Physics of Fluids, 2005, 17: 094105. doi: 10.1063/1.2046712
|
[25] |
吴俊峰, 叶文华, 张维岩. 柱几何rayleigh-taylor不稳定性的数值模拟[J]. 强激光与粒子束, 2003, 15(1):64-68Wu Junfeng, Ye Wenhua, Zhang Weiyan. Numerical simulations of Rayleigh-Taylor instability in cylindrical geometry[J]. High Power Laser and Particle Beams, 2003, 15(1): 64-68
|
[26] |
Roycroft R, Sauppe J P, Bradley P A. Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF[J]. Physics of Plasmas, 2022, 29: 032704. doi: 10.1063/5.0083190
|
[27] |
李欣, 戴振生, 郑无敌. ICF点火靶定标关系与稳定性优化设计研究[J]. 强激光与粒子束, 2015, 27:032012 doi: 10.3788/HPLPB20152703.32012Li Xin, Dai Zhensheng, Zheng Wudi. Scaling formula of ICF ignition targets and study of targets optimized in stability performance[J]. High Power Laser and Particle Beams, 2015, 27: 032012 doi: 10.3788/HPLPB20152703.32012
|
[28] |
Zheng Wanguo, Zhang Xiaomin, Wei Xiaofeng, et al. Status of the SG-III solid-state laser facility[J]. Journal of Physics: Conference Series, 2008, 112: 032009. doi: 10.1088/1742-6596/112/3/032009
|
[29] |
Ramis R, Schmalz R, Meyer-Ter-Vehn J. MULTI — a computer code for one-dimensional multigroup radiation hydrodynamics[J]. Computer Physics Communications, 1988, 49(3): 475-505. doi: 10.1016/0010-4655(88)90008-2
|
[30] |
Peterson J L, Casey D T, Hurricane O A, et al. Validating hydrodynamic growth in national ignition facility implosions[J]. Physics of Plasmas, 2015, 22: 056309. doi: 10.1063/1.4920952
|
[31] |
Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5(5): 1446-1454. doi: 10.1063/1.872802
|
[32] |
薛创, 范征锋, 叶文华. 瑞利-泰勒不稳定性线性增长的密度梯度致稳[J]. 强激光与粒子束, 2009, 21(3):386-390Xue Chuang, Fan Zhengfeng, Ye Wenhua. Variational approach for linear growth rate of Rayleigh-Taylor instability with continuous density profile[J]. High Power Laser and Particle Beams, 2009, 21(3): 386-390
|