留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究

涂绍勇 蒋炜 尹传盛 于承新 范征锋 袁永腾 蒲昱东 缪文勇 胡昕 李晋 杨轶濛 车兴森 董云松 杨冬 杨家敏

涂绍勇, 蒋炜, 尹传盛, 等. 激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究[J]. 强激光与粒子束, 2024, 36: 122001. doi: 10.11884/HPLPB202436.240379
引用本文: 涂绍勇, 蒋炜, 尹传盛, 等. 激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究[J]. 强激光与粒子束, 2024, 36: 122001. doi: 10.11884/HPLPB202436.240379
Tu Shaoyong, Jiang Wei, Yin Chuansheng, et al. Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions[J]. High Power Laser and Particle Beams, 2024, 36: 122001. doi: 10.11884/HPLPB202436.240379
Citation: Tu Shaoyong, Jiang Wei, Yin Chuansheng, et al. Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions[J]. High Power Laser and Particle Beams, 2024, 36: 122001. doi: 10.11884/HPLPB202436.240379

激光间接驱动柱几何内界面减速段的流体力学不稳定性实验研究

doi: 10.11884/HPLPB202436.240379
基金项目: 国家自然科学基金项目(11905205)
详细信息
    作者简介:

    涂绍勇,tushaoyong@163.com

    通讯作者:

    袁永腾,yyt3505@163.com

  • 中图分类号: O534

Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions

  • 摘要: 研究收缩几何下的流体力学不稳定性增长对于惯性约束聚变靶丸降低流体力学不稳定性增长和混合的优化设计具有重要的作用。在神光100 kJ激光装置上开展了辐射驱动柱几何内界面减速段的流体力学不稳定性实验,观测到模耦合现象,以及收缩几何独有的Bell-Plesset(BP)效应,理论预估BP效应导致的扰动增长与实验结果基本一致。实验中观察到驱动不对称性引入的2阶模扰动,M2不对称性约为11%,提出了通过增加黑腔长度来优化驱动不对称性的方法。柱几何流体力学不稳定性增长研究将有助于理解收缩几何效应在高能量密度条件下对流体力学不稳定性增长的影响,为优化惯性约束聚变靶丸设计提供帮助。
  • 图  1  实验排布图

    Figure  1.  Schematic diagram of the experiment setup

    图  2  柱几何样品的详细结构

    Figure  2.  Detailed structure of cylindrical sample

    图  3  柱几何样品的背光图像

    Figure  3.  Backlight image of cylindrical sample

    图  4  t=3.5 ns时的背光图像和轮廓提取

    Figure  4.  Backlight image of cylindrical sample at t=3.5 ns

    图  5  Al环内外界面轮廓的频谱分布

    Figure  5.  Fourier amplitude as a function of mode number for the inner and outer interface of the backlight image

    图  6  数值模拟的Al环平均半径随时间的变化

    Figure  6.  Radii of the inner and outer interfaces of the cylindrical sample predicted by MULTI-1D

    图  7  数值模拟的Al环内外界面运动速度随时间的变化

    Figure  7.  Velocity of cylindrical sample predicted by MULTI-1D

    图  8  上42° FXRD得到的辐射温度波形

    Figure  8.  Radiation temperature obtained by up-42° FXRD

    图  9  柱几何样品表面的辐射温度角分布

    Figure  9.  Temperature along azimuthal direction on cylinder surface

  • [1] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [3] Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170-177. doi: 10.1112/plms/s1-14.1.170
    [4] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 201(1065): 192-196.
    [5] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [6] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104.
    [7] Wang Lifeng, Ye Wenhua, He Xiantu, et al. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions[J]. Science China Physics, Mechanics & Astronomy, 2017, 60: 055201.
    [8] Regan S P, Goncharov V N, Igumenshchev I V, et al. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA[J]. Physical Review Letters, 2016, 117: 025001. doi: 10.1103/PhysRevLett.117.025001
    [9] Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [10] 吴俊峰, 缪文勇, 王立锋, 等. 神光II装置上间接驱动烧蚀瑞利-泰勒不稳定性实验分析[J]. 强激光与粒子束, 2015, 27:032009 doi: 10.3788/HPLPB20152703.32009

    Wu Junfeng, Miao Wenyong, Wang Lifeng, et al. Experimental analysis of indirect-drive ablative Rayleigh-Taylor instability on Shenguang II[J]. High Power Laser and Particle Beams, 2015, 27: 032009 doi: 10.3788/HPLPB20152703.32009
    [11] 王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001 doi: 10.11884/HPLPB202133.200173

    Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202133.200173
    [12] 旷圆圆, 卢艳. 双模瑞利-泰勒不稳定性的预热烧蚀效应研究[J]. 强激光与粒子束, 2022, 34:082203 doi: 10.11884/HPLPB202234.220133

    Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203 doi: 10.11884/HPLPB202234.220133
    [13] Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [14] Wang Lifeng, Wu Junfeng, Guo Hongyu, et al. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder[J]. Physics of Plasmas, 2015, 22: 082702. doi: 10.1063/1.4928088
    [15] Wang Lifeng, Guo Hongyu, Wu Junfeng, et al. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer[J]. Physics of Plasmas, 2014, 21: 122710. doi: 10.1063/1.4904363
    [16] 袁永腾, 缪文勇, 丁永坤, 等. 平面调制靶瑞利-泰勒不稳定性初步研究[J]. 强激光与粒子束, 2007, 19(5):781-784

    Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Preliminary experimental study of Rayleigh-Taylor instability of surface perturbation target[J]. High Power Laser and Particle Beams, 2007, 19(5): 781-784
    [17] 袁永腾, 缪文勇, 丁永坤, 等. X光背光观测烧蚀面扰动引起内界面扰动的增长[J]. 强激光与粒子束, 2007, 19(4):625-628

    Yuan Yongteng, Miao Wenyong, Ding Yongkun, et al. Observation of growth of rear surface perturbation caused by ablation surface[J]. High Power Laser and Particle Beams, 2007, 19(4): 625-628
    [18] 缪文勇, 袁永腾, 丁永坤, 等. 神光II装置上辐射驱动瑞利-泰勒不稳定性实验[J]. 强激光与粒子束, 2015, 27:032016 doi: 10.3788/HPLPB20152703.32016

    Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation-driven Rayleigh-Taylor instability on the Shenguang-II laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016 doi: 10.3788/HPLPB20152703.32016
    [19] 丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081 doi: 10.3788/HPLPB20132512.3077

    Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress on physical experiment and target diagnostics in Research Center of Laser Fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
    [20] Bell G I. Taylor instability on cylinders and spheres in the small amplitude approximation[R]. LA-1321, 1951.
    [21] Plesset M S, Zwick S A. The growth of vapor bubbles in superheated liquids[J]. Journal of Applied Physics, 1954, 25(4): 493-500. doi: 10.1063/1.1721668
    [22] Epstein R. On the bell–plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability[J]. Physics of Plasmas, 2004, 11(11): 5114-5124. doi: 10.1063/1.1790496
    [23] 李波, 张占文, 何智兵, 等. 激光惯性约束聚变靶靶丸制备与表征[J]. 强激光与粒子束, 2015, 27:032024 doi: 10.3788/HPLPB20152703.32024

    Li Bo, Zhang Zhanwen, He Zhibing, et al. Preparation and characterization of inertial confinement fusion capsules[J]. High Power Laser and Particle Beams, 2015, 27: 032024 doi: 10.3788/HPLPB20152703.32024
    [24] Mikaelian K O. Rayleigh-taylor and richtmyer-meshkov instabilities and mixing in stratified cylindrical shells[J]. Physics of Fluids, 2005, 17: 094105. doi: 10.1063/1.2046712
    [25] 吴俊峰, 叶文华, 张维岩. 柱几何rayleigh-taylor不稳定性的数值模拟[J]. 强激光与粒子束, 2003, 15(1):64-68

    Wu Junfeng, Ye Wenhua, Zhang Weiyan. Numerical simulations of Rayleigh-Taylor instability in cylindrical geometry[J]. High Power Laser and Particle Beams, 2003, 15(1): 64-68
    [26] Roycroft R, Sauppe J P, Bradley P A. Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF[J]. Physics of Plasmas, 2022, 29: 032704. doi: 10.1063/5.0083190
    [27] 李欣, 戴振生, 郑无敌. ICF点火靶定标关系与稳定性优化设计研究[J]. 强激光与粒子束, 2015, 27:032012 doi: 10.3788/HPLPB20152703.32012

    Li Xin, Dai Zhensheng, Zheng Wudi. Scaling formula of ICF ignition targets and study of targets optimized in stability performance[J]. High Power Laser and Particle Beams, 2015, 27: 032012 doi: 10.3788/HPLPB20152703.32012
    [28] Zheng Wanguo, Zhang Xiaomin, Wei Xiaofeng, et al. Status of the SG-III solid-state laser facility[J]. Journal of Physics: Conference Series, 2008, 112: 032009. doi: 10.1088/1742-6596/112/3/032009
    [29] Ramis R, Schmalz R, Meyer-Ter-Vehn J. MULTI — a computer code for one-dimensional multigroup radiation hydrodynamics[J]. Computer Physics Communications, 1988, 49(3): 475-505. doi: 10.1016/0010-4655(88)90008-2
    [30] Peterson J L, Casey D T, Hurricane O A, et al. Validating hydrodynamic growth in national ignition facility implosions[J]. Physics of Plasmas, 2015, 22: 056309. doi: 10.1063/1.4920952
    [31] Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5(5): 1446-1454. doi: 10.1063/1.872802
    [32] 薛创, 范征锋, 叶文华. 瑞利-泰勒不稳定性线性增长的密度梯度致稳[J]. 强激光与粒子束, 2009, 21(3):386-390

    Xue Chuang, Fan Zhengfeng, Ye Wenhua. Variational approach for linear growth rate of Rayleigh-Taylor instability with continuous density profile[J]. High Power Laser and Particle Beams, 2009, 21(3): 386-390
  • 加载中
图(9)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  54
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2024-11-15
  • 录用日期:  2024-11-04
  • 网络出版日期:  2024-11-07
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回