留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加速器用铁氧体-碳化硅混合型高次模阻尼器的研制

陈欣 李晨 赵伟 黄刚 向军 李天涛 杨洁 刘平 秦臻

陈欣, 李晨, 赵伟, 等. 加速器用铁氧体-碳化硅混合型高次模阻尼器的研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240154
引用本文: 陈欣, 李晨, 赵伟, 等. 加速器用铁氧体-碳化硅混合型高次模阻尼器的研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240154
Chen Xin, Li Chen, Zhao Wei, et al. Research on a ferrite-silicon carbide hybrid high-order mode damper for accelerators[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240154
Citation: Chen Xin, Li Chen, Zhao Wei, et al. Research on a ferrite-silicon carbide hybrid high-order mode damper for accelerators[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240154

加速器用铁氧体-碳化硅混合型高次模阻尼器的研制

doi: 10.11884/HPLPB202537.240154
基金项目: 国家自然科学青年基金项目(12205280)
详细信息
    作者简介:

    陈 欣,chenxin10698@126.com

    通讯作者:

    李 晨,st.eddie@163.com

  • 中图分类号: TL503.2

Research on a ferrite-silicon carbide hybrid high-order mode damper for accelerators

  • 摘要: 大电流加速器束管中,当带电粒子流通过束管时,会在束管中激励起高频场,为了降低对束流的影响,束管中产生的高次模需要利用阻尼器将高频场能量转换成热量并通过冷却装置导走。介绍了某混合型高次模阻尼器的研制及主要性能,阻尼器所采用的吸收材料为铁氧体和碳化硅,其通过金属化和钎焊实现与金属基板的焊接。通过CST和COMSOL软件分别开展了微波性能仿真和热仿真,对阻尼器的结构进行了优化设计。阻尼器的测试结果表明,该混合型阻尼器的吸收效率与计算结果在1.7 GHz以下频段相接近,在1.7 GHz以上高频段后,仿真吸收效率高于实测结果,相差较大;真空漏率、极限真空、水路耐压均满足超导高频腔设计需求。
  • 图  1  高次模阻尼器结构示意图

    Figure  1.  Schematic of the hybrid high-order mode damper

    图  2  混合型高次模阻尼器,内径为320 mm,高度为445 mm

    Figure  2.  Hybrid high-order mode damper with an inner diameter of 320 mm and a height of 445 mm

    图  3  混合型高次模阻尼器仿真与实测吸收效率(无短路活塞)

    Figure  3.  Simulation and measurement of absorption efficiency of hybrid high-order mode damper (no short piston)

    图  4  混合型高次模阻尼器在吸收功率为10 kW时的水路温度分布仿真结果

    Figure  4.  Simulation results of water temperature distribution for the hybrid high-order mode damper with an absorbed power of 10 kW

    图  5  混合型高次模阻尼器在吸收功率为10kW时的吸波材料温度分布仿真结果

    Figure  5.  Simulation results of absorbing materials temperature distribution for the hybrid high-order mode damper with an absorbed power of 10kW

    图  6  不同吸收功率下进出口水的温升(约0.4 Mpa)

    Figure  6.  Temperature rise of inlet and outlet water under different absorbed power (about 0.4 MPa)

    图  7  不同输入功率下吸收功率及吸收效率

    Figure  7.  Absorption power and absorption efficiency under different input power

    表  1  混合型高次模阻尼器在吸收功率为10 kW时的温度分布仿真及测试结果

    Table  1.   Simulation and measurement results of temperature distribution for the hybrid high-order mode damper with an absorbed power of 10 kW

    simulation results measurement results
    temperature difference between the inlet and outlet cooling water/℃ 2.3 1.1
    下载: 导出CSV

    表  2  混合型高次模阻尼器的性能测试结果

    Table  2.   Performance test results of the hybrid high-order mode damper

    vacuum leak rates/(Pa·L·s−1) ultimate vacuum/Pa water-resistant/MPa
    5×10−10 4.6×10−8 0.92
    下载: 导出CSV

    表  3  混合型高次模阻尼器的设计要求及性能测试结果

    Table  3.   Design requirements and performance test results of the hybrid high-order mode damper

    absorbed
    power/kW
    absorption
    efficiency
    vacuum leak
    rates/
    (P·L·s−1)
    ultimate
    vacuum/
    Pa
    water-
    resistant/
    Mpa
    temperature difference
    between the outlet and
    inlet cooling water/℃
    design
    requirements
    ≥10 operating frequency band(0.6~3.0GHz)≥30%,
    critical frequency bands(0.8~1.5GHz)≥50%
    ≤1×10−7 ≤6.5×10−8 ≥0.9 ≤5
    simulation
    results
    10 operating frequency band(0.6~3.0GHz)≥53%,
    critical frequency bands(0.8~1.5GHz)≥61%
    — — — — — — 2.3
    measurement
    results
    10.2 operating frequency band(0.6~3.0GHz)≥38%,
    critical frequency bands(0.8~1.5GHz)≥60%
    5×10−10 4.6×10−8 0.92 1.1
    下载: 导出CSV
  • [1] 周文中, 潘卫民, 葛锐, 等. 中国散裂中子源二期双spoke超导腔设计[J]. 强激光与粒子束, 2023, 35:034004 doi: 10.11884/HPLPB202335.220266

    Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004 doi: 10.11884/HPLPB202335.220266
    [2] 蒲小云, 侯洪涛, 马震宇, 等. 上海光源500MHz超导腔水平测试[J]. 强激光与粒子束, 2019, 31:115104 doi: 10.11884/HPLPB201931.190163

    Pu Xiaoyun, Hou Hongtao, Ma Zhenyu, et al. Horizontal test of 500 MHz superconducting cavity for SSRF[J]. High Power Laser and Particle Beams, 2019, 31: 115104 doi: 10.11884/HPLPB201931.190163
    [3] 米正辉, 沙鹏, 孙毅, 等. BEPCⅡ国产500 MHz超导腔运行综述[J]. 强激光与粒子束, 2018, 30:085103 doi: 10.11884/HPLPB201830.170485

    Mi Zhenghui, Sha Peng, Sun Yi, et al. Operation of domestic 500 MHz superconducting cavity for BEPCⅡ[J]. High Power Laser and Particle Beams, 2018, 30: 085103 doi: 10.11884/HPLPB201830.170485
    [4] Tajima T, Asano K, Furuya T, et al. Bonding of a microwave-absorbing ferrite, TDK IB-004 with copper for the HOM damper of the KEK B-factory SC cavities[C]//Proceedings of the 6th Workshop on RF Superconductivity. 1993: 1914-1916.
    [5] Terui S, Ishibashi T, Shirai M, et al. Development of ferrite higher order mode damper for SuperKEKB vacuum system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1053: 168371. doi: 10.1016/j.nima.2023.168371
    [6] Tajima T, Akai K, Asano K, et al. Beam test results on HOM absorber of superconducting cavity for KEKB[C]//Proceedings of 1997 Particle Accelerator Conference. 1997: 3090-3092.
    [7] Tajima T, Asano K, Furuya T, et al. HOM absorbers of superconducting cavities for KEKB[C]//Proceedings of the 5th European Particle Accelerator Conference. 1996: 2127-2129.
    [8] Tajima T, Asano K, Furuya T, et al. Recent development of HOM absorbers for KEKB superconducting cavities[C]//Proceedings of 1997 Workshop on RF Superconductivity. 1997: 709-724.
    [9] Nishiwaki M, Akai K, Furuya T, et al. Developments of HOM dampers for SuperKEKB superconducting cavity[C]//Proceedings of SRF2013. 2014: 1058-1060.
    [10] Moffat D, Barnes P, Kirchgessner J, et al. Design and fabrication of a ferrite-lined HOM load for CESR-B[C]//Proceedings of International Conference on Particle Accelerators. 1993: 977-979.
    [11] Huang Tongming, Pan Weimin, Wang Guangwei, et al. The development of the 499.8 MHz superconducting cavity system for BEPCII[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1013: 165649. doi: 10.1016/j.nima.2021.165649
    [12] Valles N, Eichhorn R, Hoffstaetter G, et al. HOM studies of the cornell ERL main linac cavity: HTC-1 through HTC-3[C]//Proceedings of IPAC2013. 2013: 2461-2463.
    [13] Nishiwaki M, Akai K, Furuya T, et al. Developments of SiC damper for superKEKB superconducting cavity[C]// Proceedings of SRF2015. 2015: 1289-1293.
    [14] Xu Wencan, Conway Z A, Daly E, et al. High-power test results for a cylindrical-shell silicon carbide higher-order-mode damper[J]. Physical Review Accelerators and Beams, 2024, 27: 031601. doi: 10.1103/PhysRevAccelBeams.27.031601
    [15] Hao Xuerui, Li Zhongquan, Ye Kuangkuang, et al. 500 MHz higher order mode damped cavity designed for 4th generation synchrotron radiation sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040: 167273. doi: 10.1016/j.nima.2022.167273
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  28
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-11-27
  • 录用日期:  2024-11-09
  • 网络出版日期:  2024-12-07

目录

    /

    返回文章
    返回