留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹近场高通量材料物性测试装置直线加速器微波系统研制

邵琢瑕 张通 董自强 周泽然 何志刚 王琳 陆亚林

邵琢瑕, 张通, 董自强, 等. 太赫兹近场高通量材料物性测试装置直线加速器微波系统研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240168
引用本文: 邵琢瑕, 张通, 董自强, 等. 太赫兹近场高通量材料物性测试装置直线加速器微波系统研制[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240168
Shao Zhuoxia, Zhang Tong, Dong Ziqiang, et al. Development of linear accelerator microwave system in terahertz near-field high-throughput material physical property testing system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240168
Citation: Shao Zhuoxia, Zhang Tong, Dong Ziqiang, et al. Development of linear accelerator microwave system in terahertz near-field high-throughput material physical property testing system[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240168

太赫兹近场高通量材料物性测试装置直线加速器微波系统研制

doi: 10.11884/HPLPB202537.240168
基金项目: 国家自然科学基金项目(51627901, 12405173); 科技部国家重点研发计划(2023YFA1610100)
详细信息
    作者简介:

    邵琢瑕,std@ustc.edu.cn

    通讯作者:

    董自强,dzq1992@ustc.edu.cn

  • 中图分类号: TN248.6

Development of linear accelerator microwave system in terahertz near-field high-throughput material physical property testing system

  • 摘要: 太赫兹近场高通量材料物性测试系统(NFTHZ)中集成了一台波长可调谐的太赫兹自由电子激光器(THz-FEL),该仪器采用电子能量10~18 MeV可调的直线加速器作为注入器。调节驱动激光的纵向/时间结构,可以形成电子束团的预群聚,通过匹配电子束团的群聚因子、波荡器入口处电子束能量以及波荡器K值之间的关系,能够实现MW级高峰值功率、中心波长0.5~5 THz可调的太赫兹自由电子激光。微波系统为THz-FEL中电子束加速至目标能量提供了高功率微波电场、加速结构以及微波幅度相位控制系统。本文将针对NFTHZ装置微波系统的关键技术以及电子直线加速器的研制进展进行介绍。
  • 图  1  预聚束太赫兹自由电子激光原理示意图

    Figure  1.  Schematic of pre-bunched terahertz free electron laser

    图  2  NFTHZ直线加速器微波系统布局图

    Figure  2.  Microwave system structure of NFTHZ linear accelerator

    图  3  微波功率源子系统

    Figure  3.  Microwave power source subsystem

    图  4  高功率微波传输系统

    Figure  4.  High-power microwave transmission system

    图  5  加速结构中的电场分布和加速梯度

    Figure  5.  Electric field distribution and acceleration gradient of accelerating structure

    图  6  低电平系统

    Figure  6.  Low-level RF system

    图  7  NFTHZ装置布局图

    Figure  7.  Layout diagram of NFTHZ

    图  8  电子束测量结果

    Figure  8.  Measurements of electron beam

    表  1  预聚束THz-FEL技术参数和设计指标

    Table  1.   Technical parameters and design indicators of the pre-bunched THz-FEL

    frequency
    range/
    THz
    wavelength
    range/
    µm
    electron
    energy/
    MeV
    maximum number
    of electron
    microbunches
    spacing of
    electron
    microbunches/ps
    peak power
    of FEL/
    MW
    FEL frequency
    range/
    THz
    FEL frequency range (based on the
    second harmonic of the electron
    bunches train repetition rate)/THz
    0.5~5 60~600 10~18 16 0.33~2 0.1~7 0.5~3 3~5
    下载: 导出CSV

    表  2  两种电子能量模式下微波功率测量结果

    Table  2.   Microwave power measurements in two electron energy conditions

    power monitoring location electron beam energy at 10 MeV/dBm electron beam energy at 18 MeV/dBm
    klystron output 106.31 106.27
    klystron reflection 87.65 87.38
    E-gun(pickup) 98.43 98.47
    E-gun reflection 80.64 79.88
    ACT input 100.9 103.91
    ACT reflection 85.97 86.77
    下载: 导出CSV
  • [1] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364: eaat3100. doi: 10.1126/science.aat3100
    [2] Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019, 15(4): 387-392. doi: 10.1038/s41567-018-0408-1
    [3] Kampfrath T, Sell A, Klatt G, et al. Coherent terahertz control of antiferromagnetic spin waves[J]. Nature Photonics, 2011, 5(1): 31-34. doi: 10.1038/nphoton.2010.259
    [4] Hafez H A, Chai X, Ibrahim A, et al. Intense terahertz radiation and their applications[J]. Journal of Optics, 2016, 18: 093004. doi: 10.1088/2040-8978/18/9/093004
    [5] Sajadi M, Wolf M, Kampfrath T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles[J]. Nature Communications, 2017, 8: 14963. doi: 10.1038/ncomms14963
    [6] Li Heting, Lu Yalin, He Zhigang, et al. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(7): 649-657. doi: 10.1007/s10762-016-0258-9
    [7] Liang Yifan, Liu Zhuoyuan, Tian Qili, et al. Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation[J]. Nature Photonics, 2023, 17(3): 259-263. doi: 10.1038/s41566-022-01131-7
    [8] Shen Yuzhen, Yang Xi, Carr G L, et al. Tunable few-cycle and multicycle coherent terahertz radiation from relativistic electrons[J]. Physical Review Letters, 2011, 107: 204801. doi: 10.1103/PhysRevLett.107.204801
    [9] Huang Ruixuan, Li Weiwei, Zhao Zhouyu, et al. Design of a pre-bunched THz free electron laser[J]. Particles, 2018, 1(1): 267-278. doi: 10.3390/particles1010021
    [10] Angal-Kalinin D, Bainbridge A, Brynes A D, et al. Design, specifications, and first beam measurements of the compact linear accelerator for research and applications front end[J]. Physical Review Accelerators and Beams, 2020, 23: 044801. doi: 10.1103/PhysRevAccelBeams.23.044801
    [11] Fukuda S, Michizono S, Nakao K, et al. Design and evaluation of a compact 50 MW rf source of the PF linac for the KEKB project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 368(3): 561-571.
    [12] Mohsenzade S, Zarghany M, Aghaei M, et al. A high-voltage pulse generator with continuously variable pulsewidth based on a modified PFN[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 849-858. doi: 10.1109/TPS.2017.2683800
    [13] Chang Chao, Guo Letian, Tantawi S G, et al. A new compact high-power microwave phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(6): 1875-1882. doi: 10.1109/TMTT.2015.2423281
    [14] Zheng Lianmin, Du Yingchao, Zhang Zhe, et al. Development of S-band photocathode RF guns at Tsinghua University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 834: 98-107.
    [15] Dowell D H, King F K, Kirby R E, et al. In situ cleaning of metal cathodes using a hydrogen ion beam[J]. Physical Review Special Topics-Accelerators and Beams, 2006, 9: 063502. doi: 10.1103/PhysRevSTAB.9.063502
    [16] 谢春杰, 朱文超, 冯光耀, 等. S波段直线加速器数字低电平系统研制[J]. 原子能科学技术, 2023, 57(6): 1271

    Xie Chunjie, Zhu Wenchao, Feng Guangyao, et al. Development of digital low-level RF system of S-band linac[J]. Atomic Energy Science and Technology, 2023, 57(6): 1271-1280
    [17] 朱文超, 魏征宇, 谢春杰, 等. NFTHz加速器束流横向截面尺寸测量系统研制[J]. 强激光与粒子束, 2024, 36:034004 doi: 10.11884/HPLPB202436.230361

    Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004 doi: 10.11884/HPLPB202436.230361
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  24
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-15
  • 修回日期:  2024-11-29
  • 录用日期:  2024-11-22
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回