Development of linear accelerator microwave system in terahertz near-field high-throughput material physical property testing system
-
摘要: 太赫兹近场高通量材料物性测试系统(NFTHZ)中集成了一台波长可调谐的太赫兹自由电子激光器(THz-FEL),该仪器采用电子能量10~18 MeV可调的直线加速器作为注入器。调节驱动激光的纵向/时间结构,可以形成电子束团的预群聚,通过匹配电子束团的群聚因子、波荡器入口处电子束能量以及波荡器K值之间的关系,能够实现MW级高峰值功率、中心波长0.5~5 THz可调的太赫兹自由电子激光。微波系统为THz-FEL中电子束加速至目标能量提供了高功率微波电场、加速结构以及微波幅度相位控制系统。本文将针对NFTHZ装置微波系统的关键技术以及电子直线加速器的研制进展进行介绍。Abstract: The terahertz near-field high-throughput material physical property testing system (NFTHZ) integrates a wavelength-tunable terahertz free electron laser (THz-FEL). The instrument uses a linear accelerator with tunable electron energy of 10~18 MeV as the injector. A pre-bunched electron beam can be formed by adjusting the longitudinal/temporal structure of the driving laser. By matching the relationship between the bunching factor, energy of the electron beam at the undulator entrance and the K value of undulator, a terahertz free electron laser with megawatts peak power and an adjustable center wavelength of 0.5~5 THz can be achieved. The microwave system provides high-power microwave electric field, accelerating structure and microwave amplitude and phase control system to accelerate the electron beam to the target energy. This article will introduce the development of the microwave system of the NFTHZ facility and the construction progress of the electron linear accelerator.
-
Key words:
- free electron laser /
- terahertz /
- pre-bunched electron beam /
- linear accelerator /
- microwave system
-
表 1 预聚束THz-FEL技术参数和设计指标
Table 1. Technical parameters and design indicators of the pre-bunched THz-FEL
frequency
range/
THzwavelength
range/
µmelectron
energy/
MeVmaximum number
of electron
microbunchesspacing of
electron
microbunches/pspeak power
of FEL/
MWFEL frequency
range/
THzFEL frequency range (based on the
second harmonic of the electron
bunches train repetition rate)/THz0.5~5 60~600 10~18 16 0.33~2 0.1~7 0.5~3 3~5 表 2 两种电子能量模式下微波功率测量结果
Table 2. Microwave power measurements in two electron energy conditions
power monitoring location electron beam energy at 10 MeV/dBm electron beam energy at 18 MeV/dBm klystron output 106.31 106.27 klystron reflection 87.65 87.38 E-gun(pickup) 98.43 98.47 E-gun reflection 80.64 79.88 ACT input 100.9 103.91 ACT reflection 85.97 86.77 -
[1] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364: eaat3100. doi: 10.1126/science.aat3100 [2] Kozina M, Fechner M, Marsik P, et al. Terahertz-driven phonon upconversion in SrTiO3[J]. Nature Physics, 2019, 15(4): 387-392. doi: 10.1038/s41567-018-0408-1 [3] Kampfrath T, Sell A, Klatt G, et al. Coherent terahertz control of antiferromagnetic spin waves[J]. Nature Photonics, 2011, 5(1): 31-34. doi: 10.1038/nphoton.2010.259 [4] Hafez H A, Chai X, Ibrahim A, et al. Intense terahertz radiation and their applications[J]. Journal of Optics, 2016, 18: 093004. doi: 10.1088/2040-8978/18/9/093004 [5] Sajadi M, Wolf M, Kampfrath T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles[J]. Nature Communications, 2017, 8: 14963. doi: 10.1038/ncomms14963 [6] Li Heting, Lu Yalin, He Zhigang, et al. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(7): 649-657. doi: 10.1007/s10762-016-0258-9 [7] Liang Yifan, Liu Zhuoyuan, Tian Qili, et al. Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation[J]. Nature Photonics, 2023, 17(3): 259-263. doi: 10.1038/s41566-022-01131-7 [8] Shen Yuzhen, Yang Xi, Carr G L, et al. Tunable few-cycle and multicycle coherent terahertz radiation from relativistic electrons[J]. Physical Review Letters, 2011, 107: 204801. doi: 10.1103/PhysRevLett.107.204801 [9] Huang Ruixuan, Li Weiwei, Zhao Zhouyu, et al. Design of a pre-bunched THz free electron laser[J]. Particles, 2018, 1(1): 267-278. doi: 10.3390/particles1010021 [10] Angal-Kalinin D, Bainbridge A, Brynes A D, et al. Design, specifications, and first beam measurements of the compact linear accelerator for research and applications front end[J]. Physical Review Accelerators and Beams, 2020, 23: 044801. doi: 10.1103/PhysRevAccelBeams.23.044801 [11] Fukuda S, Michizono S, Nakao K, et al. Design and evaluation of a compact 50 MW rf source of the PF linac for the KEKB project[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 368(3): 561-571. [12] Mohsenzade S, Zarghany M, Aghaei M, et al. A high-voltage pulse generator with continuously variable pulsewidth based on a modified PFN[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 849-858. doi: 10.1109/TPS.2017.2683800 [13] Chang Chao, Guo Letian, Tantawi S G, et al. A new compact high-power microwave phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(6): 1875-1882. doi: 10.1109/TMTT.2015.2423281 [14] Zheng Lianmin, Du Yingchao, Zhang Zhe, et al. Development of S-band photocathode RF guns at Tsinghua University[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 834: 98-107. [15] Dowell D H, King F K, Kirby R E, et al. In situ cleaning of metal cathodes using a hydrogen ion beam[J]. Physical Review Special Topics-Accelerators and Beams, 2006, 9: 063502. doi: 10.1103/PhysRevSTAB.9.063502 [16] 谢春杰, 朱文超, 冯光耀, 等. S波段直线加速器数字低电平系统研制[J]. 原子能科学技术, 2023, 57(6): 1271Xie Chunjie, Zhu Wenchao, Feng Guangyao, et al. Development of digital low-level RF system of S-band linac[J]. Atomic Energy Science and Technology, 2023, 57(6): 1271-1280 [17] 朱文超, 魏征宇, 谢春杰, 等. NFTHz加速器束流横向截面尺寸测量系统研制[J]. 强激光与粒子束, 2024, 36:034004 doi: 10.11884/HPLPB202436.230361Zhu Wenchao, Wei Zhengyu, Xie Chunjie, et al. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36: 034004 doi: 10.11884/HPLPB202436.230361