Monte Carlo simulation of proton response in Timepix detectors
-
摘要: 在激光驱动惯性约束聚变实验研究中,质子能谱诊断常用的记录介质CR-39固体径迹探测器在能谱测量方面存在时效性与一致性的缺陷,而具有在线信号获取能力的Timepix探测器能够克服这些问题。为将Timepix探测器应用于内爆质子能谱探测,研究Timepix探测器对质子能量和入射角度的响应十分有必要。在Allpix2框架内,使用蒙特卡罗方法分析了Timepix探测器对不同能量和入射角度质子束的响应。模拟结果显示,以质子能否穿透传感器灵敏区域为区分,Timepix探测器对质子束入射角度与能量的响应规律在簇形态、簇尺寸分布以及簇电荷分布上具有显著差异。当入射质子束能量低于6 MeV时,Timepix探测器探测效率高,且质子入射角度不会对探测器能量响应产生显著影响。Abstract: In laser-driven inertial confinement fusion experiments, the CR-39 detector, a commonly - used recording medium for proton energy spectrum diagnosis, has timeliness and consistency flaws in energy spectrum measurement. However, the Timepix detector with the ability to obtain online signals can overcome these problems. To apply the Timepix detector to detect implosion proton energy spectra, it is essential to study the response of the Timepix detector to proton energies and incident angles. This work analyzes the response of the Timepix detector to proton beams in different energies and incident angles within the Allpix2 framework using Monte Carlo methods. The simulation results show that the response of the Timepix detector to proton beams in different energies and incident angles exhibits significant differences in cluster morphology, cluster size distribution, and cluster charge distribution. When incident proton beam energy is below 6 MeV, the Timepix detector exhibits high detection efficiency, and the angle of proton incidence does not significantly affect the energy response of the detector.
-
Key words:
- laser fusion /
- monte carlo simulation /
- detector /
- proton spectrum /
- Pixelated cluster
-
表 1 模拟参数
Table 1. Parameters of simulation
group detector type particle type θ/(deg) θ step/(deg) energy of proton/(MeV) energy step of proton/(MeV) energy timepix proton 0 / 1-8 1 0 10-16 2 0 6.1-6.5 0.1 0 6.15 / angle timepix proton 0-75 15 5.5 / 14.7 -
[1] Hurricane O A, Patel P K, Betti R, et al. Physics principles of inertial confinement fusion and U. S. program overview[J]. Reviews of Modern Physics, 2023, 95: 025005. doi: 10.1103/RevModPhys.95.025005 [2] Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 2007, 98: 155001. doi: 10.1103/PhysRevLett.98.155001 [3] Séguin F H, Li C K, Frenje J A, et al. Using secondary-proton spectra to study the compression and symmetry of deuterium-filled capsules at OMEGA[J]. Physics of Plasmas, 2002, 9(6): 2725-2737. doi: 10.1063/1.1472502 [4] Zylstra A B, Frenje J A, Séguin F H, et al. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions[J]. Review of Scientific Instruments, 2012, 83: 10D901. doi: 10.1063/1.4729672 [5] Seguin F H, Sinenian N, Rosenberg M, et al. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science[J]. Review of Scientific Instruments, 2012, 83: 10D908. doi: 10.1063/1.4732065 [6] Llopart X, Ballabriga R, Campbell M, et al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581(1/2): 485-494. [7] Granja C, Kudela K, Jakubek J, et al. Directional detection of charged particles and cosmic rays with the miniaturized radiation camera MiniPIX Timepix[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 911: 142-152. [8] Zhang Xing, Zheng Jianhua, Yan Ji, et al. The application of proton spectrometers at the SG-III facility for ICF implosion areal density diagnostics[J]. High Power Laser Science and Engineering, 2015, 3: e28. doi: 10.1017/hpl.2015.29 [9] Dib A, Ammi H, Mammeri S, et al. Energy loss straggling data of 63Cu, 28Si, 27Al, 24Mg, 19F and 16O heavy ions crossing thin polymeric foils at low energy[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 491(8): 7-16. [10] Ballabriga R, Campbell M, Llopart X. Asic developments for radiation imaging applications: the medipix and timepix family[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 878: 10-23. [11] Vykydal Z, Jakubek J. USB Lite—Miniaturized readout interface for Medipix2 detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633 Suppl 1: S48-S49. [12] Vykydal Z, Jakubek J, Pospisil S. USB interface for Medipix2 pixel device enabling energy and position-sensitive detection of heavy charged particles[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 563(1): 112-115. [13] Granja C, Jakubek J, Martisikova M, et al. Dynamic range and resolving power of the Timepix detector to heavy charged particles[J]. Journal of Instrumentation, 2018, 13: C11003. doi: 10.1088/1748-0221/13/11/C11003 [14] Hortala T. Outreach award for initiative to teach high-school physics with CERN detectors in Spain[R]. CERN, 2022. [15] Spannagel S, Wolters K, Hynds D, et al. Allpix2: a modular simulation framework for silicon detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 901: 164-172. [16] Jakubek J. Energy-sensitive X-ray radiography and charge sharing effect in pixelated detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607(1): 192-195. [17] Hoang S, Pinsky L, Vilalta R, et al. LET estimation of heavy ion particles based on a Timepix-based Si detector[J]. Journal of Physics: Conference Series, 2012, 396: 022023. doi: 10.1088/1742-6596/396/2/022023