留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共源共栅结构GaN HEMT器件高能质子辐射效应

邱一武 董磊 殷亚楠 周昕杰

邱一武, 董磊, 殷亚楠, 等. 共源共栅结构GaN HEMT器件高能质子辐射效应[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240223
引用本文: 邱一武, 董磊, 殷亚楠, 等. 共源共栅结构GaN HEMT器件高能质子辐射效应[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240223
Qiu Yiwu, Dong Lei, Yin Yanan, et al. High-energy proton irradiation effect of Cascode structure GaN HEMT device[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240223
Citation: Qiu Yiwu, Dong Lei, Yin Yanan, et al. High-energy proton irradiation effect of Cascode structure GaN HEMT device[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240223

共源共栅结构GaN HEMT器件高能质子辐射效应

doi: 10.11884/HPLPB202537.240223
基金项目: 抗辐照应用技术创新中心创新基金项目(KFZC2021010202)
详细信息
    作者简介:

    邱一武,1441956858@qq.com

    通讯作者:

    周昕杰,zhouxinjie2000@sina.com

  • 中图分类号: TN386

High-energy proton irradiation effect of Cascode structure GaN HEMT device

  • 摘要: 针对增强型共源共栅Cascode结构GaN HEMT器件,利用5 MeV、60 MeV和300 MeV质子进行注量为2×1012~1×1014 p/cm2的辐照实验,研究高能质子辐照后器件电学性能的退化规律和损伤机制。实验发现,注量为2×1012 p/cm2的5 MeV质子辐照后,器件阈值电压明显减小,跨导峰位负漂且峰值跨导减小,饱和漏极电流显著增加,栅泄露电流无明显变化,当辐照注量达到1×1013 p/cm2后,电学性能退化受到抑制并趋于饱和。分析认为Cascode结构GaN HEMT器件内部级联硅基MOS管的存在是导致辐照后阈值电压负漂和漏极电流增大的内在原因。结合低频噪声测试分析,发现质子辐照注量越高,器件噪声功率谱密度越大,表明辐照引入的缺陷就越多,辐照损伤越严重。与60 MeV和300 MeV质子辐照结果相比,5 MeV质子辐照后器件电学特性退化最为严重。利用SRIM仿真得到GaN材料受到质子辐照后产生的空位情况,结果显示质子入射能量越低,产生的空位数量越多(镓空位VGa占主导),器件电学特性退化就越显著。
  • 图  1  TP65H035WS器件结构示意图及开封前后器件光学图像

    Figure  1.  Structure diagram of the TP65H035WS device and optical diagrams of the device before and after decap

    (a) structure diagram of device; (b) optical diagram of device before decap; (c) optical diagram of device interiorlayout; (d) optical diagram of device after decap

    图  2  实验器件辐照前I-V特性曲线及辐照实验条件流程图

    Figure  2.  I-V characteristic curves of experimental devices before irradiation and flow chart of irradiation experimental condition

    (a) irradiation experimental condition; (b) I-V characteristic curves of experimental devices before irradiation (illustration is threshold voltage); (c) flow chart of irradiation experiment

    图  3  不同注量的5 MeV质子辐照前后GaN HEMT器件特性变化曲线

    Figure  3.  Characteristic change curves of GaN HEMT devices before and after 5 MeV proton irradiation under different doses

    图  4  不同注量的5 MeV质子辐照后GaN HEMT器件电参数变化柱状图

    Figure  4.  Electrical parameter change histogram of GaN HEMT devices after different irradiation doses of 5 MeV proton

    图  5  不同注量的5 MeV质子辐照前后器件的归一化漏极电流噪声功率谱密度Sid与频率的关系

    Figure  5.  The normalized drain current noise power spectral density Sid as a function of frequency before and after 5 MeV proton irradiation under different doses

    图  6  60 MeV和300 MeV质子辐照前后GaN HEMT器件转移特性与输出特性曲线

    Figure  6.  Transfer characteristic and output characteristic curves of GaN HEMT devices before and after 60 MeV and 300 MeV proton irradiation

    图  7  不同能量质子辐照在5 μm GaN材料中的碰撞事件

    Figure  7.  Collision events in 5 μm GaN material under different energies proton irradiation

    图  8  不同能量质子辐照在GaN材料中产生的空位浓度与辐照注量的关系

    Figure  8.  Vacancies concentrations in the GaN material created by different energies proton irradiation as a function of proton doses

    表  1  器件电学参数与质子辐照能量的依赖性(注量:2×1012 p/cm2)

    Table  1.   Energy-dependent changes of device electrical parameters after proton irradiation(dose:2×1012 p/cm2)

    proton energy/(MeV) Vth/(V) Gm,max/(S) Ids@Vds=1.5V, Vgs=6V/(A)
    pre-irradiation 4.8±0.2 18.8±0.2 37±0.3
    5 1.1 12.1 53.8
    60 4.64 18.8 43.4
    300 4.73 18.2 39.6
    下载: 导出CSV
  • [1] Hu Xinwen, Karmarkar A P, Jun B, et al. Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 1791-1796. doi: 10.1109/TNS.2003.820792
    [2] Carbone M, Hirche K, Morand S, et al. An overview of GaN FET technology, reliability, radiation and market for future space application[C]//2019 European Space Power Conference (ESPC). 2019: 1-4.
    [3] 沈自才. 空间辐射环境工程[M]. 北京: 中国宇航出版社, 2013

    Shen Zicai. Space radiation environmental engineering[M]. Beijing: China Aerospace Press, 2013
    [4] Kim D S, Lee J H, Yeo S, et al. Proton irradiation effects on AlGaN/GaN HEMTs with different isolation methods[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 579-582. doi: 10.1109/TNS.2017.2780273
    [5] Xapsos M A, O’Neill P M, O’Brien T P. Near-earth space radiation models[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1691-1705. doi: 10.1109/TNS.2012.2225846
    [6] Kim H Y, Kim J, Liu Lu, et al. Effects of proton irradiation energies on degradation of AlGaN/GaN high electron mobility transistors[J]. Journal of Vacuum Science & Technology B, 2012, 30: 012202.
    [7] Wan Xin, Baker O K, McCurdy M W, et al. Low energy proton irradiation effects on commercial enhancement mode GaN HEMTs[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 253-257. doi: 10.1109/TNS.2016.2621065
    [8] Chen Ziwen, Yue Shaozhong, Wang Jinbin, et al. Proton-induced effect on AlGaN/GaN HEMTs after hydrogen treatment[J]. IEEE Transactions on Device and Materials Reliability, 2021, 21(3): 297-302. doi: 10.1109/TDMR.2021.3090337
    [9] Koehler A D, Anderson T J, Tadjer M J, et al. Impact of surface passivation on the dynamic on-resistance of proton-irradiated AlGaN/GaN HEMTs[J]. IEEE Electron Device Letters, 2016, 37(5): 545-548. doi: 10.1109/LED.2016.2537050
    [10] Liu Lu, Hwang Y H, Xi Yuyin, et al. Study on the effects of proton irradiation on the dc characteristics of AlGaN/GaN high electron mobility transistors with source field plate[J]. Journal of Vacuum Science & Technology B, 2014, 32: 022202.
    [11] Kim H Y, Lo C F, Liu L, et al. Proton-irradiated InAlN/GaN high electron mobility transistors at 5, 10, and 15 MeV energies[J]. Applied Physics Letters, 2012, 100: 012107. doi: 10.1063/1.3673906
    [12] Hwang Y H, Li Shun, Hsieh Y L, et al. Effect of proton irradiation on AlGaN/GaN high electron mobility transistor off-state drain breakdown voltage[J]. Applied Physics Letters, 2014, 104: 082106. doi: 10.1063/1.4866858
    [13] 刘峻, 季启政, 杨铭, 等. 质子辐照对AlGaN/GaN HEMT亚阈值摆幅特性的影响[J]. 半导体技术, 2023, 48(2):110-116

    Liu Jun, Ji Qizheng, Yang Ming, et al. Influence of proton irradiation on subthreshold swing characteristics of AlGaN/GaN HEMTs[J]. Semiconductor Materials and Devices, 2023, 48(2): 110-116
    [14] Keum D M, Sung H K, Kim H. Degradation characteristics of normally-off p-AlGaN gate AlGaN/GaN HEMTs with 5 MeV proton irradiation[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 258-262. doi: 10.1109/TNS.2016.2612227
    [15] 白如雪, 郭红霞, 张鸿, 等. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究[J]. 物理学报, 2023, 72:012401 doi: 10.7498/aps.72.20221617

    Bai Ruxue, Guo Hongxia, Zhang Hong, et al. High-energy proton radiation effect of gallium nitride power device with enhanced Cascode structure[J]. Acta Physica Sinica, 2023, 72: 012401 doi: 10.7498/aps.72.20221617
    [16] Faruk M G, Wilkins R, Dwivedi R C, et al. Proton and neutron radiation effects studies of MOSFET transistors for potential deep-space mission applications[C]//2012 IEEE Aerospace Conference. 2012: 1-13.
    [17] Seehra S S, Slusark W J. The Effect of operating conditions on the radiation resistance of VDMOS power FETs[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1559-1563. doi: 10.1109/TNS.1982.4336404
    [18] Wu Hao, Fu Xiaojun, Luo Jun, et al. Total ionizing dose effects on the threshold voltage of GaN Cascode devices[J]. Micromachines, 2023, 14: 1832. doi: 10.3390/mi14101832
    [19] 姜利来. AlGaN/GaN高迁移率晶体管质子辐照效应计算模拟研究[D]. 上海: 华东师范大学, 2023: 32-38

    Jiang Lilai. Computational simulation of proton irradiation effect in AlGaN/GaN high mobility transistors[D]. Shanghai: East China Normal University, 2023: 32-38
    [20] Ahn S, Dong Chen, Zhu Weidi, et al. Effect of proton irradiation energy on AlGaN/GaN metal-oxide semiconductor high electron mobility transistors[J]. Journal of Vacuum Science & Technology B, 2015, 33: 051208.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  28
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-09-04
  • 录用日期:  2024-10-06
  • 网络出版日期:  2024-11-26

目录

    /

    返回文章
    返回