留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线缆高功率微波耦合特性仿真与试验研究

肖天 高原 秦风

肖天, 高原, 秦风. 线缆高功率微波耦合特性仿真与试验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240225
引用本文: 肖天, 高原, 秦风. 线缆高功率微波耦合特性仿真与试验研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240225
Xiao Tian, Gao Yuan, Qin Feng. Simulation and experimental study on high power microwave coupling characteristics of cables[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240225
Citation: Xiao Tian, Gao Yuan, Qin Feng. Simulation and experimental study on high power microwave coupling characteristics of cables[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240225

线缆高功率微波耦合特性仿真与试验研究

doi: 10.11884/HPLPB202537.240225
基金项目: 上海市“科技创新行动计划”技术标准项目(23DZ2201000); 四川省重要技术标准研究项目(ZYBZ2023-40)
详细信息
    作者简介:

    肖 天,xiaotianhit@163.com

    通讯作者:

    秦 风,fq_soul2000@163.com

  • 中图分类号: O441.4

Simulation and experimental study on high power microwave coupling characteristics of cables

  • 摘要: 高功率微波易通过电子设备间互连线缆这一主要耦合途径进入系统内部,扰乱甚至损坏敏感电路或器件。为指导工程上合理布线,提升电子系统在高功率微波环境下生存能力,采用仿真分析和试验验证相结合的方法,系统性研究了不同参数条件(线缆长度、离地高度、端接负载阻值、辐射场入射角)下高功率微波与线缆的耦合效应,获取了耦合响应规律并分析了内在原因。结果表明:耦合信号随线缆长度增加先振荡变化后逐渐趋于稳定,振荡周期与入射波波长相等;耦合信号随线缆距地高度变化呈现振荡变化,极大值和极小值分别出现在距地高度为入射波1/4波长的奇数倍以及1/2波长的整数倍时;耦合信号随端接负载阻值增加先变小后变大,当负载阻值与线缆特性阻抗匹配时,耦合信号最小;耦合信号随来波方向与线缆布设方向间夹角的增大而增大,当两者垂直时,耦合信号最大。在此基础上给出实际工程中线缆敷设优化建议。
  • 图  1  时域有限积分法中的离散网格

    Figure  1.  Discrete grid in time domain finite integral method

    图  2  高功率微波对线缆的耦合模型示意图

    Figure  2.  Schematic diagram of the coupling model of high power microwave on cables

    图  3  HPM激励源波形及频谱特征

    Figure  3.  Waveform and spectrum characteristics of HPM excitation source

    图  4  不同线长下端口耦合电压波形

    Figure  4.  Port coupling voltage waveform under different cable length

    图  5  线长对端口耦合电压峰值影响

    Figure  5.  Effect of cable length on port coupling voltage peak

    图  6  不同离地高度下线缆端口耦合电压波形

    Figure  6.  Cable port coupling voltage waveform under different height from ground

    图  7  离地高度对端口耦合电压峰值影响

    Figure  7.  Effect of height from ground on port coupling voltage peak

    图  8  参考地面上方的入射场和反射场

    Figure  8.  Incident and reflected fields above the reference ground

    图  9  不同负载阻值下线缆端口耦合电压波形

    Figure  9.  Cable port coupling voltage waveform under different load resistance

    图  10  负载阻值对端口耦合电压峰值影响

    Figure  10.  Effect of load resistance on port coupling voltage peak

    图  11  不同入射角下线缆端口耦合电压波形

    Figure  11.  Cable port coupling voltage waveform under different incidence angle

    图  12  入射角对端口耦合电压峰值影响

    Figure  12.  Effect of incidence angle on port coupling voltage peak

    图  13  入射角为$ \psi $的平面波与线缆耦合示意图

    Figure  13.  Diagram of plane wave coupling with cable at incident angle $ \psi $

    图  14  线缆高功率微波耦合测试试验场景

    Figure  14.  High power microwave coupling test scenario for cables

    图  15  不同参数下线缆耦合信号功率试验结果

    Figure  15.  Test results of cable coupling signal power under different parameters

  • [1] 苏东林, 谢树果, 戴飞, 等. 系统级电磁兼容性量化设计理论与方法[M]. 北京: 国防工业出版社, 2015

    Su Donglin, Xie Shuguo, Dai Fei, et al. The theory and methods of quantification design on system-level electromagnetic compatibility[M]. Beijing: National Defense Industry Press, 2015
    [2] Wang Jian, Yin Wenyan, Fang Jinpeng, et al. Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse[J]. Progress in Electromagnetics Research, 2010, 106: 1-16. doi: 10.2528/PIER10060708
    [3] 刘尚合, 刘卫东. 电磁兼容与电磁防护相关研究进展[J]. 高电压技术, 2014, 40(6):1605-1613

    Liu Shanghe, Liu Weidong. Progress of relevant research on electromagnetic compatibility and electromagnetic protection[J]. High Voltage Engineering, 2014, 40(6): 1605-1613
    [4] 陈宇浩, 谢彦召, 刘民周, 等. 高空电磁脉冲作用下电力系统主要效应模式分析[J]. 强激光与粒子束, 2019, 31:070007 doi: 10.11884/HPLPB201931.190184

    Chen Yuhao, Xie Yanzhao, Liu Minzhou, et al. Analysis of high-altitude electromagnetic effect models on power system[J]. High Power Laser and Particle Beams, 2019, 31: 070007 doi: 10.11884/HPLPB201931.190184
    [5] 余丹阳. 高空核爆电磁脉冲对输电线缆的耦合效应研究[D]. 成都: 电子科技大学, 2016: 45-50

    Yu Danyang. The research on the coupling effect of high altitude nuclear electromagneti pulse on transmission lines[D]. Chengdu: University of Electronic Science and Technology of China, 2016: 45-50
    [6] 李飞. 高空核爆炸的电磁脉冲对地面线缆的影响[D]. 南京: 南京邮电大学, 2017: 22-25

    Li Fei. Influence of electromagnetic pulse of high -altitude nuclear explosion on ground cable[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017: 22-25
    [7] 袁继纲, 陈海林, 毛自文. 进入人防工程的架空线缆对HEMP耦合特性研究[J]. 电子科技, 2016, 29(4):127-129

    Yuan Jigang, Chen Hailin, Mao Ziwen. HEMP coupling characteristics of overhead cable into civil air defense work[J]. Electronic Science and Technology, 2016, 29(4): 127-129
    [8] 杜子韦华, 谢彦召. 架空及埋地多导体线缆对HEMP辐照的瞬态响应[J]. 强激光与粒子束, 2019, 31:070003 doi: 10.11884/HPLPB201931.190142

    Du Ziweihua, Xie Yanzhao. Transient response of overhead and buried multiconductor lines to HEMP[J]. High Power Laser and Particle Beams, 2019, 31: 070003 doi: 10.11884/HPLPB201931.190142
    [9] 周颖慧, 侯亚彤, 李超, 等. 基于细导线FDTD方法的埋地线缆HPM耦合效应研究[C]//第27届全国电磁兼容学术会议论文集. 2021: 257-260

    Zhou Yinghui, Hou Yatong, Li Chao, et al. Study on HPM coupling effect of buried cable based on thin conductor FDTD method[C]//Proceedings of the EMC-2021.2021: 257-260
    [10] 董昱青, 韩玉兵, 高成. 窄带高功率微波对裸露线缆的耦合特性仿真[J]. 现代应用物理, 2023, 14:030504

    Dong Yuqing, Han Yubing, Gao Cheng. Coupling characteristics of exposed cable irradiated by narrow band high power microwave[J]. Modern Applied Physics, 2023, 14: 030504
    [11] 大卫A·韦斯顿. 电磁兼容原理与应用[M]. 杨自佑, 王守三, 译. 2版. 北京: 机械工业出版社, 2015: 110-113

    Weston D A. Electromagnetic compatibility principles and applications[M]. Yang Ziyou, Wang Shousan, trans. 2nd ed. Beijing: China Machine Press, 2015: 110-113
    [12] Weiland T. On the numerical solution of Maxwell’s equations and applications in the field of accelerator physics[J]. Particle Accelerators, 1984, 15: 245-292.
    [13] 李得玺. 圆柱坐标系有限积分方法仿真耦合腔高频特性[D]. 成都: 电子科技大学, 2007

    Li Dexi. Simulation of high frequency characteristics of coupled cavity by finite integral method in cylindrical coordinate system[D]. Chengdu: University of Electronic Science and Technology of China, 2007
    [14] Tesche F M, Lanoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York: John Wiley & Sons, 1996: 295-319.
  • 加载中
图(15)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  21
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-11-12
  • 录用日期:  2024-09-26
  • 网络出版日期:  2024-12-10

目录

    /

    返回文章
    返回