留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1064 nm泵浦乙烷1.55 μm拉曼激光研究

王海洋 徐明 蔡向龙 刘栋 孙景露 钱飞宇 李俊涛 郭敬为

王海洋, 徐明, 蔡向龙, 等. 1064 nm泵浦乙烷1.55 μm拉曼激光研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240232
引用本文: 王海洋, 徐明, 蔡向龙, 等. 1064 nm泵浦乙烷1.55 μm拉曼激光研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240232
Wang Haiyang, Xu Ming, Cai Xianglong, et al. Study on 1.55 μm Raman laser in ethane gas pumped by 1064 nm pulsed laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240232
Citation: Wang Haiyang, Xu Ming, Cai Xianglong, et al. Study on 1.55 μm Raman laser in ethane gas pumped by 1064 nm pulsed laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240232

1064 nm泵浦乙烷1.55 μm拉曼激光研究

doi: 10.11884/HPLPB202537.240232
基金项目: 一体化多波长高脉冲能量激光技术研究(5091401010112)
详细信息
    作者简介:

    王海洋,359379146@qq.com

    通讯作者:

    郭敬为,jingweiguo@dicp.ac.cn

  • 中图分类号: TN248

Study on 1.55 μm Raman laser in ethane gas pumped by 1064 nm pulsed laser

  • 摘要: 受激拉曼散射(SRS)作为一种高效的激光频率改变方法,受到广泛关注。但是拉曼激光也存在着明显的不足,其波长缺少连续调谐的能力,因此需要开发更多的拉曼活性介质,提高拉曼频移覆盖密度。以波长为1064 nm的激光作为泵浦源,以高压乙烷作为拉曼活性介质,产生了波长为1550 nm的一阶拉曼(S1),实验过程中未发现明显后向拉曼和高阶拉曼,通过优化实验条件,降低激光诱导击穿(LIB),使S1的光子转化效率提高到了20.7%,最高脉冲能量达到21.2 mJ。并且首次测量了乙烷对1.55 μm激光的吸收系数和吸收截面,它们分别是5.71$ \times {{10}}^{-{8}} $ m−1 Pa−1$ {2.35} \times {{10}}^{-{24}}{\text{ cm}}^{{2}} $
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagrams of experimental setup

    图  2  使用f1=1.0m单透镜聚焦时,不同乙烷气压条件下S1光子转化效率随着泵浦激光脉冲能量变化曲线

    Figure  2.  S1 photon conversion efficiencies of ethane under different pump energies and ethane pressures with single f1=1.0 m focal lens

    图  3  不同焦距透镜聚焦条件下S1光子转化效率随着泵浦激光脉冲能量变化曲线

    Figure  3.  S1 photon conversion efficiencies of ethane under different pump energies and focal lens

    图  4  使用双次聚焦条件下S1光子转化效率随着泵浦激光脉冲能量变化曲线

    Figure  4.  S1 photon conversion efficiencies of ethane under double focusing configuration

    图  5  不同焦距透镜聚焦条件下归一化总光子转化效率随泵浦激光脉冲能量变化的曲线

    Figure  5.  Normalized total photon number curves under different focus configurations

    图  6  不同气压条件下乙烷对1.55 μm激光的吸收曲线

    Figure  6.  Effect of ethane on 1.55 μm laser under different pressure

    表  1  经过吸收池后脉冲能量和透过率随乙烷气压的变化

    Table  1.   Residual 1.55 μm energiesand transmission rates after passing through the absorption cell under different ethane pressures

    pressure/MPa pulse energy after passing through the absorption pool/mJ transmission rate $ {T_{\text{r}}} $ $ \lg \left( {\dfrac{1}{{{T_{\text{r}}}}}} \right) $
    2.0 5.82 0.62 0.20
    1.8 6.28 0.67 0.17
    1.6 6.63 0.70 0.15
    1.4 6.89 0.73 0.13
    1.2 7.18 0.76 0.11
    1.0 7.73 0.82 0.08
    下载: 导出CSV
  • [1] Rao Han, Liu Zhaojun, Cong Zhenhua, et al. High power YAG/Nd: YAG/YAG ceramic planar waveguide laser[J]. Laser Physics Letters, 2017, 14: 045801. doi: 10.1088/1612-202X/aa5d2d
    [2] Ma Qinglei, Mo Haiding, Zhao J. High-energy high-efficiency Nd: YLF laser end-pump by 808 nm diode[J]. Optics Communications, 2018, 413: 220-223. doi: 10.1016/j.optcom.2017.12.058
    [3] 刘伟仁, 霍玉晶, 何淑芳. LD抽运的946 nm Nd: YAG激光器及其腔内倍频[J]. 光电子·激光, 2002, 13(3):247-249 doi: 10.3321/j.issn:1005-0086.2002.03.008

    Liu Weiren, Huo Yujing, He Shufang. LD pumped 946 nm Nd: YAG laser and intracavity-doubling[J]. Journal of Optoelectronics Laser, 2002, 13(3): 247-249 doi: 10.3321/j.issn:1005-0086.2002.03.008
    [4] Zhang Ling, Yu Huijuan, Yan Shilian, et al. A 1319 nm diode-side-pumped Nd: YAG laser Q-switched with graphene oxide[J]. Journal of Modern Optics, 2013, 60(15): 1287-1289. doi: 10.1080/09500340.2013.837975
    [5] Chen Yubin, Wang Zefeng, Li Zhixian, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm[J]. Optics Express, 2017, 25(17): 20944-20949. doi: 10.1364/OE.25.020944
    [6] Cai Xianglong, Zhou Canhua, Zhou Dongjian, et al. H2 stimulated Raman scattering in a multi-pass cell with a Herriott configuration[J]. Chinese Physics Letters, 2015, 32: 114207. doi: 10.1088/0256-307X/32/11/114207
    [7] Grasiuk A Z, Zubarev I G, Efimkov V F, et al. High-power SRS lasers – coherent summators (the way it was)[J]. Quantum Electronics, 2012, 42(12): 1064-1072. doi: 10.1070/QE2012v042n12ABEH015060
    [8] Stewart R B, Kung R T V. A kilohertz repetition rate 1.9 μm H2 Raman oscillator[J]. IEEE Journal of Quantum Electronics, 1989, 25(10): 2142-2148. doi: 10.1109/3.35728
    [9] Goehlich A, Czarnetzki U, Döbele H F. Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding[J]. Applied Optics, 1998, 37(36): 8453-8459. doi: 10.1364/AO.37.008453
    [10] Li D J, Yang G L, Chen F, et al. Stimulated rotational Raman scattering at multiwavelength under tea CO2 laser pumping with a multiple-pass cell[J]. Laser Physics, 2012, 22(5): 937-940. doi: 10.1134/S1054660X12050167
    [11] Zheng Tiancheng, Cai Xianglong, Li Zhonghui, et al. Stimulated Raman scattering in CH4 gas using single cylindrical lens focusing[J]. Optics Communications, 2021, 493: 126987. doi: 10.1016/j.optcom.2021.126987
    [12] Xu Ming, Liu Dong, Cai Xianglong, et al. High efficiency ethane Raman laser pumped by 532 nm laser[J]. Results in Optics, 2023, 12: 100436. doi: 10.1016/j.rio.2023.100436
    [13] Liu Dong, Cai Xianglong, Li Zhonghui, et al. The threshold reduction of SRS in deuterium by multi-pass configuration[J]. Optics Communications, 2016, 379: 36-40. doi: 10.1016/j.optcom.2016.05.040
    [14] Zhou Dongjian, Guo Jingwei, Zhou Canhua, et al. Intracavity CH4 Raman laser using negative-branch unstable resonator[J]. Optics Communications, 2015, 356: 49-53. doi: 10.1016/j.optcom.2015.07.025
    [15] Vodchits A I, Orlovich V A, Werncke W, et al. Influence of gas circulation on stimulated Raman scattering and amplification of ultrashort laser pulses in methane[J]. Optics Communications, 2008, 281(11): 3190-3195. doi: 10.1016/j.optcom.2008.02.019
    [16] Li Hao, Huang Wei, Cui Yulong, et al. 3 W tunable 1.65 μm fiber gas Raman laser in D2-filled hollow-core photonic crystal fibers[J]. Optics & Laser Technology, 2020, 132: 106474.
    [17] Kochanov V P, Kuryak A N, Makogon M M, et al. Spontaneous and backward stimulated Raman scattering of light in methane[J]. Optics and Spectroscopy, 2006, 101(2): 183-190. doi: 10.1134/S0030400X06080030
    [18] Kazzaz A, Ruschin S, Shoshan I, et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 1994, 30(12): 3017-3024. doi: 10.1109/3.362703
    [19] Zheng Tiancheng, Cai Xianglong, Shen Chencheng, et al. The investigation of stimulated Raman scattering in gases under di-harmonic pumping[J]. Optics Communications, 2022, 516: 128246. doi: 10.1016/j.optcom.2022.128246
    [20] Li Zhixian, Zhou Zhiyue, Huang Wei, et al. Efficient 1.55-μm fiber source by stimulated Raman scattering in ethane-filled hollow-core fiber[J]. Optical Engineering, 2018, 57: 056115.
    [21] 蔡向龙, 李仲慧, 刘栋, 等. 基于氘气受激拉曼散射的1.6 μm波段大能量脉冲激光研究[J]. 中国激光, 2022, 49:1101001 doi: 10.3788/CJL202249.1101001

    Cai Xianglong, Li Zhonghui, Liu Dong, et al. High energy pulsed laser in 1.6 μm waveband based on deuterium gas stimulated Raman scattering[J]. Chinese Journal of Lasers, 2022, 49: 1101001 doi: 10.3788/CJL202249.1101001
    [22] Odashima J, Shinoda Y, Takeda H. Estimation method of photovoltaic power output using extended Lambert-Beer law[J]. Electrical Engineering in Japan, 2020, 212(1/4): 35-42.
    [23] 魏合理, 邬承就, 龚知本. 1.315 μm波长附近实际大气高分辨率吸收光谱[J]. 强激光与粒子束, 2002, 14(1):35-40

    Wei Heli, Wu Chengjiu, Gong Zhiben. High-resolution absorption spectra of real atmosphere at 1.315 μm[J]. High Power Laser and Particle Beams, 2002, 14(1): 35-40
    [24] Hargreaves R J, Buzan E, Dulick M, et al. High-resolution absorption cross sections of C2H6 at elevated temperatures[J]. Molecular Astrophysics, 2015, 1: 20-25. doi: 10.1016/j.molap.2015.09.001
    [25] Hemmati H. Interplanetary laser communications and precision ranging[J]. Laser & Photonics Reviews, 2011, 5(5): 697-710.
    [26] Dicaire I, Jukna V, Praz C, et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 2016, 10(3): 481-493.
    [27] Dequal D, Agnesi C, Sarrocco D, et al. 100 kHz satellite laser ranging demonstration at Matera laser ranging observatory[J]. Journal of Geodesy, 2021, 95: 26. doi: 10.1007/s00190-020-01469-2
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-12-02
  • 录用日期:  2024-11-04
  • 网络出版日期:  2024-12-09

目录

    /

    返回文章
    返回