Study on 1.55 μm Raman laser in ethane gas pumped by 1064 nm pulsed laser
-
摘要: 受激拉曼散射(SRS)作为一种高效的激光频率改变方法,受到广泛关注。但是拉曼激光也存在着明显的不足,其波长缺少连续调谐的能力,因此需要开发更多的拉曼活性介质,提高拉曼频移覆盖密度。以波长为
1064 nm的激光作为泵浦源,以高压乙烷作为拉曼活性介质,产生了波长为1550 nm的一阶拉曼(S1),实验过程中未发现明显后向拉曼和高阶拉曼,通过优化实验条件,降低激光诱导击穿(LIB),使S1的光子转化效率提高到了20.7%,最高脉冲能量达到21.2 mJ。并且首次测量了乙烷对1.55 μm激光的吸收系数和吸收截面,它们分别是5.71$ \times {{10}}^{-{8}} $ m−1 Pa−1和$ {2.35} \times {{10}}^{-{24}}{\text{ cm}}^{{2}} $ 。Abstract: Stimulated Raman scattering is an effective non-linear frequency conversion method, and has received much attention. However, Raman lasers also have drawbacks, such as wavelength of Raman lasers could not be tuned continuously, therefore, the coverage of Raman laser wavelength is limited. So more Raman active media are required to improve the coverage of Raman lasers. In this work,1064 nm laser was used as pump source, and pressurized ethane was used as Raman active medium, and1550 nm Raman laser was produced. No obvious backward Raman laser, nor higher orders of Stokes Raman lasers were observed in this experiment. By the optimization of experimental parameters, laser induced breakdown was meliorated; S1 Raman laser photon conversion efficiency was improved to 20.7%, and the maximum S1 energy was 21.2 mJ. Ethane was found having significant absorption at wavelength of1550 nm, this was the major reason for the limited photon conversion efficiency and pulse energy of S1 Raman laser. The absorption coefficient of ethane at1550 nm was measured to be 5.71$ \times {{10}}^{-{8}} $ m−1 Pa−1, and the absorption cross section was measured to be$ {2.3}{5} \times {{10}}^{-{24}}{\text{ cm}}^{{2}} $ .-
Key words:
- stimulated Raman scattering /
- 1.55 μm laser /
- conversion efficiency /
- absorption coefficient /
- ethane
-
表 1 经过吸收池后脉冲能量和透过率随乙烷气压的变化
Table 1. Residual 1.55 μm energiesand transmission rates after passing through the absorption cell under different ethane pressures
pressure/MPa pulse energy after passing through the absorption pool/mJ transmission rate $ {T_{\text{r}}} $ $ \lg \left( {\dfrac{1}{{{T_{\text{r}}}}}} \right) $ 2.0 5.82 0.62 0.20 1.8 6.28 0.67 0.17 1.6 6.63 0.70 0.15 1.4 6.89 0.73 0.13 1.2 7.18 0.76 0.11 1.0 7.73 0.82 0.08 -
[1] Rao Han, Liu Zhaojun, Cong Zhenhua, et al. High power YAG/Nd: YAG/YAG ceramic planar waveguide laser[J]. Laser Physics Letters, 2017, 14: 045801. doi: 10.1088/1612-202X/aa5d2d [2] Ma Qinglei, Mo Haiding, Zhao J. High-energy high-efficiency Nd: YLF laser end-pump by 808 nm diode[J]. Optics Communications, 2018, 413: 220-223. doi: 10.1016/j.optcom.2017.12.058 [3] 刘伟仁, 霍玉晶, 何淑芳. LD抽运的946 nm Nd: YAG激光器及其腔内倍频[J]. 光电子·激光, 2002, 13(3):247-249 doi: 10.3321/j.issn:1005-0086.2002.03.008Liu Weiren, Huo Yujing, He Shufang. LD pumped 946 nm Nd: YAG laser and intracavity-doubling[J]. Journal of Optoelectronics Laser, 2002, 13(3): 247-249 doi: 10.3321/j.issn:1005-0086.2002.03.008 [4] Zhang Ling, Yu Huijuan, Yan Shilian, et al. A 1319 nm diode-side-pumped Nd: YAG laser Q-switched with graphene oxide[J]. Journal of Modern Optics, 2013, 60(15): 1287-1289. doi: 10.1080/09500340.2013.837975 [5] Chen Yubin, Wang Zefeng, Li Zhixian, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm[J]. Optics Express, 2017, 25(17): 20944-20949. doi: 10.1364/OE.25.020944 [6] Cai Xianglong, Zhou Canhua, Zhou Dongjian, et al. H2 stimulated Raman scattering in a multi-pass cell with a Herriott configuration[J]. Chinese Physics Letters, 2015, 32: 114207. doi: 10.1088/0256-307X/32/11/114207 [7] Grasiuk A Z, Zubarev I G, Efimkov V F, et al. High-power SRS lasers – coherent summators (the way it was)[J]. Quantum Electronics, 2012, 42(12): 1064-1072. doi: 10.1070/QE2012v042n12ABEH015060 [8] Stewart R B, Kung R T V. A kilohertz repetition rate 1.9 μm H2 Raman oscillator[J]. IEEE Journal of Quantum Electronics, 1989, 25(10): 2142-2148. doi: 10.1109/3.35728 [9] Goehlich A, Czarnetzki U, Döbele H F. Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding[J]. Applied Optics, 1998, 37(36): 8453-8459. doi: 10.1364/AO.37.008453 [10] Li D J, Yang G L, Chen F, et al. Stimulated rotational Raman scattering at multiwavelength under tea CO2 laser pumping with a multiple-pass cell[J]. Laser Physics, 2012, 22(5): 937-940. doi: 10.1134/S1054660X12050167 [11] Zheng Tiancheng, Cai Xianglong, Li Zhonghui, et al. Stimulated Raman scattering in CH4 gas using single cylindrical lens focusing[J]. Optics Communications, 2021, 493: 126987. doi: 10.1016/j.optcom.2021.126987 [12] Xu Ming, Liu Dong, Cai Xianglong, et al. High efficiency ethane Raman laser pumped by 532 nm laser[J]. Results in Optics, 2023, 12: 100436. doi: 10.1016/j.rio.2023.100436 [13] Liu Dong, Cai Xianglong, Li Zhonghui, et al. The threshold reduction of SRS in deuterium by multi-pass configuration[J]. Optics Communications, 2016, 379: 36-40. doi: 10.1016/j.optcom.2016.05.040 [14] Zhou Dongjian, Guo Jingwei, Zhou Canhua, et al. Intracavity CH4 Raman laser using negative-branch unstable resonator[J]. Optics Communications, 2015, 356: 49-53. doi: 10.1016/j.optcom.2015.07.025 [15] Vodchits A I, Orlovich V A, Werncke W, et al. Influence of gas circulation on stimulated Raman scattering and amplification of ultrashort laser pulses in methane[J]. Optics Communications, 2008, 281(11): 3190-3195. doi: 10.1016/j.optcom.2008.02.019 [16] Li Hao, Huang Wei, Cui Yulong, et al. 3 W tunable 1.65 μm fiber gas Raman laser in D2-filled hollow-core photonic crystal fibers[J]. Optics & Laser Technology, 2020, 132: 106474. [17] Kochanov V P, Kuryak A N, Makogon M M, et al. Spontaneous and backward stimulated Raman scattering of light in methane[J]. Optics and Spectroscopy, 2006, 101(2): 183-190. doi: 10.1134/S0030400X06080030 [18] Kazzaz A, Ruschin S, Shoshan I, et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 1994, 30(12): 3017-3024. doi: 10.1109/3.362703 [19] Zheng Tiancheng, Cai Xianglong, Shen Chencheng, et al. The investigation of stimulated Raman scattering in gases under di-harmonic pumping[J]. Optics Communications, 2022, 516: 128246. doi: 10.1016/j.optcom.2022.128246 [20] Li Zhixian, Zhou Zhiyue, Huang Wei, et al. Efficient 1.55-μm fiber source by stimulated Raman scattering in ethane-filled hollow-core fiber[J]. Optical Engineering, 2018, 57: 056115. [21] 蔡向龙, 李仲慧, 刘栋, 等. 基于氘气受激拉曼散射的1.6 μm波段大能量脉冲激光研究[J]. 中国激光, 2022, 49:1101001 doi: 10.3788/CJL202249.1101001Cai Xianglong, Li Zhonghui, Liu Dong, et al. High energy pulsed laser in 1.6 μm waveband based on deuterium gas stimulated Raman scattering[J]. Chinese Journal of Lasers, 2022, 49: 1101001 doi: 10.3788/CJL202249.1101001 [22] Odashima J, Shinoda Y, Takeda H. Estimation method of photovoltaic power output using extended Lambert-Beer law[J]. Electrical Engineering in Japan, 2020, 212(1/4): 35-42. [23] 魏合理, 邬承就, 龚知本. 1.315 μm波长附近实际大气高分辨率吸收光谱[J]. 强激光与粒子束, 2002, 14(1):35-40Wei Heli, Wu Chengjiu, Gong Zhiben. High-resolution absorption spectra of real atmosphere at 1.315 μm[J]. High Power Laser and Particle Beams, 2002, 14(1): 35-40 [24] Hargreaves R J, Buzan E, Dulick M, et al. High-resolution absorption cross sections of C2H6 at elevated temperatures[J]. Molecular Astrophysics, 2015, 1: 20-25. doi: 10.1016/j.molap.2015.09.001 [25] Hemmati H. Interplanetary laser communications and precision ranging[J]. Laser & Photonics Reviews, 2011, 5(5): 697-710. [26] Dicaire I, Jukna V, Praz C, et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 2016, 10(3): 481-493. [27] Dequal D, Agnesi C, Sarrocco D, et al. 100 kHz satellite laser ranging demonstration at Matera laser ranging observatory[J]. Journal of Geodesy, 2021, 95: 26. doi: 10.1007/s00190-020-01469-2