留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于COMSOL动网格的电磁轨道炮动态电磁特性仿真

闫林波 何欣波 魏兵 杨谦 李林茜

闫林波, 何欣波, 魏兵, 等. 基于COMSOL动网格的电磁轨道炮动态电磁特性仿真[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240243
引用本文: 闫林波, 何欣波, 魏兵, 等. 基于COMSOL动网格的电磁轨道炮动态电磁特性仿真[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240243
Yan Linbo, He Xinbo, Wei Bing, et al. Simulation of dynamic electromagnetic characteristics of electromagnetic railgun based on COMSOL moving mesh[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240243
Citation: Yan Linbo, He Xinbo, Wei Bing, et al. Simulation of dynamic electromagnetic characteristics of electromagnetic railgun based on COMSOL moving mesh[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240243

基于COMSOL动网格的电磁轨道炮动态电磁特性仿真

doi: 10.11884/HPLPB202537.240243
基金项目: 国家自然科学基金项目(62201411,62371378); 中央高校基本科研业务费专项资金项目(XJSJ24035); 电波环境特性及模化技术重点实验室基金项目(JCKY2024210C61424030201)
详细信息
    作者简介:

    闫林波,13679109236@163.com

    通讯作者:

    何欣波,hexinbo@xidian.edu.cn

  • 中图分类号: O433.1;O436

Simulation of dynamic electromagnetic characteristics of electromagnetic railgun based on COMSOL moving mesh

  • 摘要: 精确、快速求解电磁轨道炮电磁特性,对于电磁轨道炮动态特性研究和可靠性设计具有重要意义。基于COMSOL动网格功能,提出一种新的网格划分形式—滑移网格+动网格划分。对电枢区域及枢轨接触的轨道部分进行滑移网格划分,对于其余轨道部分进行动网格划分。这种划分方式不但能解决“静网格”计算准确性低(粗网格)与计算复杂度高(细网格)的问题,也能准确求解瞬态以及快速移动的模型的动态电磁特性。采用脉冲激励电流对所建立的电磁轨道炮模型进行仿真分析。比较了三种静网格与本文提出的网格划分方式的计算时间、计算单元个数。并对不同网格划分方式对于电枢运动速度、电枢中心位置处电流密度分布的仿真结果进行比较,数值计算结果证明了所提出的网格划分方式的有效性与高效性。
  • 图  1  轨道炮工作原理

    Figure  1.  Working principle of railgun

    图  2  滑移网格+动网格图示

    Figure  2.  Diagram of sliding mesh and dynamic mesh

    图  3  全部为细网格划分

    Figure  3.  All divided into fine meshs

    图  4  全部为粗网格划分

    Figure  4.  All are coarse mesh divisions

    图  5  轨道为粗规网格划分,电枢为细网格划分

    Figure  5.  Coarse track mesh and fine armature mesh

    图  6  脉冲激励电流分布示意图

    Figure  6.  Schematic diagram of pulse excitation current distribution

    图  7  不同网格划分方式在矩形脉冲电流作用下电枢速度随时间变化图

    Figure  7.  Armature velocity changes with time under the action of rectangular pulse current

    图  8  不同网格划分方式在高斯脉冲电流作用下电枢速度随时间变化图

    Figure  8.  Armature velocity vs time under Gaussian pulse current

    图  9  不同网格划分方式在电枢中心位置电流密度变化图

    Figure  9.  Diagram of current density at the center of the armature with different meshing methods

    表  1  电磁轨道炮模型参数

    Table  1.   Model parameters of electromagnetic railgun

    track
    length/mm
    track
    width/mm
    track
    thickness/mm
    center to center
    spacing/mm
    orbital
    conductivity/(S·m−1)
    armature
    length/mm
    armature
    width/mm
    armature
    conductivity/(S·m−1)
    900 40 20 50 $ 5.998 \times {10^7} $ 50 30 $ 3.774 \times {10^7} $
    下载: 导出CSV

    表  2  电枢模型参数取值

    Table  2.   Parameter values of armature model

    average height of the rough
    surface $ {\sigma _{{\mathrm{asp}}}} $/μm
    average slope of the
    rough surface $ {m_{{\mathrm{asp}}}} $/μm
    microhardness of
    solids $ {H_{\mathrm{c}}} $/Pa
    coefficient of
    friction $ \;{ \mu _{\mathrm{f}}} $
    viscous coefficient
    of friction $ {C_{\mathrm{f}}} $
    rectangular pulse
    current intensity $ {I_0} $/MA
    1 0.4 $3 \times {10^9}$ 0.11 0.03 0.7
    下载: 导出CSV

    表  3  三种不同静网格划分方式所划分的网格信息

    Table  3.   Mesh information divided by three different static meshing methods

    mesh
    information
    domain units
    number
    boundary elements
    number
    edge elements
    number
    maximum mesh
    size/mm
    minimum mesh
    size/mm
    mesh① 57500 17172 1973 90 16.2
    mesh② 935392 79766 4279 18 0.18
    mesh③ 326996 55474 5206 90 0.18
    mesh④ 372512 53554 4254 90 0.18
    下载: 导出CSV

    表  4  不同网格划分方式与激励电流作用下计算时间

    Table  4.   Calculation time under different grid partitioning methods and excitation currents

    calculation time/s
    rectangular pulse current Gaussian pulse current
    mesh① 2491 3907
    mesh② 59277 78209
    mesh③ 8602 12611
    mesh④ 11113 15507
    下载: 导出CSV
  • [1] 裴畅贵, 刘国志, 金寅翔, 等. 基于COMSOL的电磁发射一体化弹丸动力学分析[J]. 火炮发射与控制学报, 2024, 45(1):104-112

    Pei Changgui, Liu Guozhi, Jin Yinxiang, et al. Dynamic analysis of electromagnetically launched integrated projectiles based on COMSOL[J]. Journal of Gun Launch & Control, 2024, 45(1): 104-112
    [2] 马伟明, 鲁军勇. 电磁发射技术的研究现状与挑战[J]. 电工技术学报, 2023, 38(15):3943-3959

    Ma Weiming, Lu Junyong. Research progress and challenges of electromagnetic launch technology[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3943-3959
    [3] Praneeth S R N, Singh B, Shukl P. A novel iterative technique for interoperability of real-time simulation and finite element simulation using railgun circuit[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(8): 3575-3579.
    [4] Zhang Huihui, Li Shuai, Gao Xiang, et al. Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns[J]. IEEE Transactions on Plasma Science, 2020, 48(12): 4342-4349. doi: 10.1109/TPS.2020.3034121
    [5] Zhou Pengfei, Li Baoming. Numerical calculation of magnetic-thermal coupling and optimization analysis for velocity skin effect[J]. IEEE Transactions on Plasma Science, 2021, 49(12): 3994-4001. doi: 10.1109/TPS.2021.3123821
    [6] Tosun N, Ceylan D, Polat H, et al. A comparison of velocity skin effect modeling with 2-D transient and 3-D quasi-transient finite element methods[J]. IEEE Transactions on Plasma Science, 2021, 49(4): 1500-1507. doi: 10.1109/TPS.2021.3067105
    [7] Yang K S, Kim S H, Lee B, et al. Electromagnetic launch experiments using a 4.8-MJ pulsed power supply[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1358-1361. doi: 10.1109/TPS.2015.2394805
    [8] 杨艺, 郭静. 美军电磁轨道炮发展综述[J]. 国外坦克, 2015(4):35-38

    Yang Yi, Guo Jing. Overview of the development of US electromagnetic rail guns[J]. Foreign Tanks, 2015(4): 35-38
    [9] 温艳玲, 戴玲, 祝琦, 等. 分布储能式电磁轨道炮效率分析[J]. 强激光与粒子束, 2020, 32:025007 doi: 10.11884/HPLPB202032.190332

    Wen Yanling, Dai Ling, Zhu Qi, et al. Efficiency of distributed energy storage electromagnetic railgun[J]. High Power Laser and Particle Beams, 2020, 32: 025007 doi: 10.11884/HPLPB202032.190332
    [10] 郭仁荃, 李豪杰, 杨宇鑫. 基于COMSOL的轨道炮弹引信部位磁场组合屏蔽仿真[J]. 探测与控制学报, 2020, 42(3):8-13,19

    Guo Renquan, Li Haojie, Yang Yuxin. COMSOL simulation of railgun projectile fuze combination magnetic shielding[J]. Journal of Detection & Control, 2020, 42(3): 8-13,19
    [11] 金亮, 巩德鑫. 电磁轨道炮电枢电磁推力特性分析与验证[J]. 火炮发射与控制学报, 2023, 44(6):1-7,27

    Jin Liang, Gong Dexin. Analysis and verification of armature electromagnetic thrust characteristics of an electromagnetic railgun[J]. Journal of Gun Launch & Control, 2023, 44(6): 1-7,27
    [12] 关晓存, 李治源, 赵然, 等. 线圈炮电枢电磁-热耦合仿真分析[J]. 强激光与粒子束, 2011, 23(8):2267-2272 doi: 10.3788/HPLPB20112308.2267

    Guan Xiaocun, Li Zhiyuan, Zhao Ran, et al. Simulation analysis of electromagnetic-thermal coupling for armature in inductive coilgun[J]. High Power Laser and Particle Beams, 2011, 23(8): 2267-2272 doi: 10.3788/HPLPB20112308.2267
    [13] 王昊. 电磁轨道温度时空分布特性研究[D]. 天津大学, 2020: 21-27

    Wang Hao. Study on space-time distribution characteristics of rail electromagnetic launch[D]. Tianjin: Tianjin University, 2020: 21-27
    [14] 楼宇涛, 栗保明. 管身对中口径电磁轨道炮的影响分析[J]. 强激光与粒子束, 2015, 27:093201 doi: 10.11884/HPLPB201527.093201

    Lou Yutao, Li Baoming. Influence of containment for medium caliber electromagnetic railgun[J]. High Power Laser and Particle Beams, 2015, 27: 093201 doi: 10.11884/HPLPB201527.093201
    [15] 马硕, 杨帆, 农奥兵, 等. 影响电磁炮轨道电流密度和温度的主要因素分析[J]. 兵器材料科学与工程, 2022, 45(2):1-9

    Ma Shuo, Yang Fan, Nong Aobing, et al. Analysis of main factors affecting the rail current density and temperature of electromagnetic railgun[J]. Ordnance Material Science and Engineering, 2022, 45(2): 1-9
    [16] 关永超, 邹文康, 何勇, 等. 串联型双轨增强电磁轨道炮电路模拟[J]. 强激光与粒子束, 2014, 26:115001 doi: 10.11884/HPLPB201426.115001

    Guan Yongchao, Zou Wenkang, He Yong, et al. Circuit simulation of the electromagnetic railgun system[J]. High Power Laser and Particle Beams, 2014, 26: 115001 doi: 10.11884/HPLPB201426.115001
    [17] 葛一凡, 秦实宏, 陈彪, 等. 电磁发射轨道截面瞬态电磁热的耦合场分析[J]. 武汉工程大学学报, 2022, 44(3):331-335

    Ge Yifan, Qin Shihong, Chen Biao, et al. Transient electromagnetic thermal coupling field of electromagnetic launch rail section[J]. Journal of Wuhan Institute of Technology, 2022, 44(3): 331-335
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-12-03
  • 录用日期:  2024-12-03
  • 网络出版日期:  2024-12-09

目录

    /

    返回文章
    返回