Parameter design method of magnetic compression power supply based on genetic algorithm
-
摘要: 磁压缩电源主要用于为压缩磁体供电,以形成压缩场反等离子体所需的磁场位形,是磁压缩系统中的重要组成部分。压缩磁体线圈数量众多,线圈之间耦合关系复杂,导致求解形成目标磁场所需的电源参数非常困难,对电源设计带来一定挑战。提出了一种基于遗传算法的磁压缩电源参数设计方法,以提高参数设计效率。根据磁压缩电源工作电路拓扑及线圈之间的耦合关系,推导了磁压缩电源系统的物理模型。在物理模型的基础上,提出了基于遗传算法的磁压缩电源参数设计方法,并阐明了该方法的基本原理。编写了算法代码并建立了MATLAB仿真模型,在理想情况及实际工程两种设计情况下对HFRC磁压缩系统电源参数进行了优化设计,得到了优化磁场与目标磁场位形基本一致的结果。同时建立了MAXWELL仿真模型对比分析,两种模型的输出结果吻合度很高,验证了该方法在电源设计时的有效性和准确性。Abstract: The magnetic compression power supply, which is an important part of the magnetic compression system, is mainly used to supply power to the compressed magnet to form the magnetic field shape required for the field reversed configuration (FRC) plasma compression. The large number of compressed magnet coils and the complex coupling relationship between the coils make it difficult to solve the power supply parameters required to form the target magnetic field. A method is proposed for designing the parameters of the magnetic compression power supply based on genetic algorithm with high efficiency. According to the topology of the magnetic compression power supply and the coupling relationship between the coils, the physical model of the power supply system is derived. On the basis of the physical model, the design method of compressed power supply parameters based on genetic algorithm is proposed, and the basic principle of the method is clarified. The algorithm code and the MATLAB simulation model are established. Under the ideal situation and practical engineering design conditions, the power supply parameters of the HFRC magnetic compression system were optimized, the results of the optimized magnetic field are basically consistent with the target magnetic field shape. Meanwhile, a MAXWELL simulation model is established for comparative analysis, the results of these two modes fits well, which verifies the effectiveness and accuracy of the method in power supply design.
-
表 1 初始电源参数
Table 1. Initial power supply parameters
coil capacitance/mF voltage/kV C1 3.4 23.5 C2 3.4 23.5 C3 3.5 23.2 C4 3.5 23 C5 3.5 22.9 C6 3.6 22.5 C7 3.7 21.8 C8 4.0 20.1 C9 7.8 9.1 C10 7.8 9.1 C11 9.2 7.7 表 2 电源参数寻优域
Table 2. Power parameter optimization domain
coil maximum
capacitance/mFminimum
capacitance/mFmaximum
voltage/kVminimum
voltage/kVC1 3.54 3.26 25.3 21.7 C2 3.54 3.26 25.3 21.7 C3 3.64 3.36 25 21.4 C4 3.64 3.36 24.8 21.2 C5 3.64 3.36 24.7 21.1 C6 3.75 3.45 24.2 20.8 C7 3.85 3.55 23.5 20.1 C8 4.16 3.84 21.7 18.5 C9 8.43 7.17 10.1 8.1 C10 8.43 7.17 10.1 8.1 C11 9.94 8.46 8.5 6.9 表 3 电源参数优化结果
Table 3. Power supply parameter optimization results
coil capacitance/mF voltage/kV C1 3.44 23.3 C2 3.41 23.5 C3 3.53 22.8 C4 3.67 22.6 C5 3.58 22.4 C6 3.49 23.1 C7 3.81 23.4 C8 3.97 20.9 C9 7.48 9.3 C10 7.91 9.5 C11 9.63 8.5 表 4 电源参数优化结果(电容值统一)
Table 4. Power supply parameter optimization results (uniform capacitance values)
coil capacitance/mF voltage/kV C1 3.72 22.4 C2 3.72 22.6 C3 3.72 22.3 C4 3.72 22.6 C5 3.72 22.1 C6 3.72 23.6 C7 3.72 23.1 C8 3.72 21.6 C9 8.15 9.4 C10 8.15 9.2 C11 8.15 8.1 -
[1] Tuszewski M. Field reversed configurations[J]. Nuclear Fusion, 1988, 28(11): 2033-2092. doi: 10.1088/0029-5515/28/11/008 [2] Yoshimura S, Sugimoto S, Okada S. Computed multiple tomography for translated field reversed configuration plasma[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2510-2511. doi: 10.1109/TPS.2014.2321399 [3] Zhang Shouyin, Intrator T P, Wurden G A, et al. Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner[J]. Physics of Plasmas, 2005, 12: 052513. doi: 10.1063/1.1899648 [4] Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: a field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10): 4314-4323. doi: 10.1063/1.1606534 [5] Intrator T P, Siemon R E, Sieck P E. Adiabatic model and design of a translating field reversed configuration[J]. Physics of Plasmas, 2008, 15: 042505. doi: 10.1063/1.2907165 [6] Laberge M, Howard S, Richardson D, et al. Acoustically driven Magnetized Target Fusion[C]//2013 IEEE 25th Symposium on Fusion Engineering (SOFE). 2013: 1-7. [7] Freidberg J P. Plasma physics and fusion energy[M]. Cambridge: Cambridge University Press, 2007: 344-350. [8] Steinhauer L C. Review of field-reversed configurations[J]. Physics of Plasmas, 2011, 18: 070501. doi: 10.1063/1.3613680 [9] Kirtley D, Milroy R. Fundamental scaling of adiabatic compression of field reversed configuration thermonuclear fusion plasmas[J]. Journal of Fusion Energy, 2023, 42: 30. doi: 10.1007/s10894-023-00367-7 [10] Sun Qizhi, Yang Xianjun, Jia Yuesong, et al. Formation of Field Reversed Configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003 [11] Francis Thio Y C, Knapp C E, Kirkpatrick R C, et al. A physics exploratory experiment on plasma liner formation[J]. Journal of Fusion Energy, 2001, 20(1/2): 1-11. doi: 10.1023/A:1019813528507 [12] Okada S, Kitano K, Goto S. Axial magnetic compression of FRC plasma[J]. IEEJ Transactions on Fundamentals and Materials, 1999, 119(11): 1324-1329. doi: 10.1541/ieejfms1990.119.11_1324 [13] Rej D J, Taggart D P, Baron M H, et al. High-power magnetic-compression heating of field-reversed configurations[J]. Physics of Fluids B: Plasmas Physics, 1992, 4(7): 1909-1919. doi: 10.1063/1.860043 [14] Kitano K, Matsumoto H, Yamanaka K, et al. Advanced experiments on field-reversed configuration at Osaka[C]//Proceedings of the 1988 International Congress on Plasma Physics Combined Eith the 25th EPS Conference on Controlled Fusion and Plasma Physics, 1998. [15] Rej D J, Waganaar W J. Performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment[C]//Eighth IEEE International Conference on Pulsed Power. 1991: 217-220. [16] Grabowski C, Gale D, Parker J, et al. Design of FRC formation and liner compression experiment (F-LINCX) at AFRL[C]//2005 IEEE Pulsed Power Conference. 2005: 304-307. [17] Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007: 1513-1516. [18] Debray F, Frings P. State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002 [19] Ding H F, Jiang C X, Ding T H, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785 [20] 李传. ITER极向场变流器高功率大电流电抗器的设计与研制[D]. 武汉: 华中科技大学, 2016: 40-43Li Chuan. Research and design on high-power large-current reactor applied to ITER poloidal field converter power supply[D]. Wuhan: Huazhong University of Science & Technology, 2016: 40-43 [21] 张之翔. 电磁学中几个简单问题里的椭圆积分[J]. 大学物理, 2002, 21(4):22-24 doi: 10.3969/j.issn.1000-0712.2002.04.007Zhang Zhixiang. Elliptical integrals in the expression of results of some simple problems in electromagnetics[J]. College Physics, 2002, 21(4): 22-24 doi: 10.3969/j.issn.1000-0712.2002.04.007 [22] De Jong K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975: 1-47. [23] 胡妙娟, 胡春, 钱锋. 遗传算法中选择策略的分析[J]. 计算机与数字工程, 2006, 34(3):1-3,57 doi: 10.3969/j.issn.1672-9722.2006.03.001Hu Miaojuan, Hu Chun, Qian Feng. General analysis of selection strategy in genetic algorithm[J]. Computer & Digital Engineering, 2006, 34(3): 1-3,57 doi: 10.3969/j.issn.1672-9722.2006.03.001 [24] Zhang Qinglong, Rao Bo, Yang Yong, et al. Analysis and design of in-vessel magnetic compression coil system for HFRC[J]. Fusion Engineering and Design, 2023, 194: 113751. doi: 10.1016/j.fusengdes.2023.113751 -