留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的磁压缩电源参数设计方法

叶少华 杨勇 饶波 张明

王飞, 周再发, 李伟华, 等. 基于严格电磁场模型的光学光刻仿真[J]. 强激光与粒子束, 2015, 27: 024106. doi: 10.11884/HPLPB201527.024106
引用本文: 叶少华, 杨勇, 饶波, 等. 基于遗传算法的磁压缩电源参数设计方法[J]. 强激光与粒子束, 2025, 37: 035012. doi: 10.11884/HPLPB202537.240259
Wang Fei, Zhou Zaifa, Li Weihua, et al. Rigorous electromagnetic field model for optical lithography simulation[J]. High Power Laser and Particle Beams, 2015, 27: 024106. doi: 10.11884/HPLPB201527.024106
Citation: Ye Shaohua, Yang Yong, Rao Bo, et al. Parameter design method of magnetic compression power supply based on genetic algorithm[J]. High Power Laser and Particle Beams, 2025, 37: 035012. doi: 10.11884/HPLPB202537.240259

基于遗传算法的磁压缩电源参数设计方法

doi: 10.11884/HPLPB202537.240259
基金项目: 国家自然科学基金项目(62201217、51821005);国家重点研发计划项目(2017YFE0301803)
详细信息
    作者简介:

    叶少华,m202372412@hust.edu.cn

    通讯作者:

    杨 勇,yangyong_hust@163.com

  • 中图分类号: TM552

Parameter design method of magnetic compression power supply based on genetic algorithm

  • 摘要: 磁压缩电源主要用于为压缩磁体供电,以形成压缩场反等离子体所需的磁场位形,是磁压缩系统中的重要组成部分。压缩磁体线圈数量众多,线圈之间耦合关系复杂,导致求解形成目标磁场所需的电源参数非常困难,对电源设计带来一定挑战。提出了一种基于遗传算法的磁压缩电源参数设计方法,以提高参数设计效率。根据磁压缩电源工作电路拓扑及线圈之间的耦合关系,推导了磁压缩电源系统的物理模型。在物理模型的基础上,提出了基于遗传算法的磁压缩电源参数设计方法,并阐明了该方法的基本原理。编写了算法代码并建立了MATLAB仿真模型,在理想情况及实际工程两种设计情况下对HFRC磁压缩系统电源参数进行了优化设计,得到了优化磁场与目标磁场位形基本一致的结果。同时建立了MAXWELL仿真模型对比分析,两种模型的输出结果吻合度很高,验证了该方法在电源设计时的有效性和准确性。
  • 图  1  磁压缩电源拓扑

    Figure  1.  Magnetic compression power supply topology

    图  2  放电阶段等效电路拓扑

    Figure  2.  Equivalent circuit topology during the discharge phase

    图  3  续流阶段等效电路拓扑

    Figure  3.  Equivalent circuit topology in the freewheeling phase

    图  4  磁压缩线圈组示意图

    Figure  4.  Schematic diagram of a magnetic compression coil bank

    图  5  单个磁压缩线圈示意图及其单匝线圈截面图

    Figure  5.  Schematic diagram of a single magnetic compression coil and cross-section of a single-turn coil

    图  6  单线圈磁场求解示意图

    Figure  6.  Schematic diagram of a single-coil magnetic field solution

    图  7  算法流程图

    Figure  7.  Algorithm flowchart

    图  8  HFRC压缩磁体示意图

    Figure  8.  Schematic diagram of an HFRC compression magnet

    图  9  算法代码及模型实现逻辑

    Figure  9.  Algorithm code and model implementation logic

    图  10  算法收敛曲线

    Figure  10.  Algorithm convergence curve

    图  11  线圈中轴线上磁场分布随时间演化图(MATLAB)及50 μs、150 μs、250 μs时两者磁场位形对比

    Figure  11.  Evolution of the magnetic field distribution on the central axis of the coil (MATLAB) and magnetic field comparison at 50 μs, 150 μs and 250 μs

    图  12  目标磁场、优化磁场与初始磁场位形对比

    Figure  12.  Comparison of target magnetic field, optimized magnetic field and initial magnetic field configuration

    图  13  算法收敛曲线

    Figure  13.  Algorithm convergence curve

    图  14  目标磁场、优化磁场(统一电容、不统一电容)与初始磁场位形对比

    Figure  14.  Comparison of target magnetic field, optimized magnetic field (uniform and unique capacitance) and initial magnetic field configuration

    表  1  初始电源参数

    Table  1.   Initial power supply parameters

    coilcapacitance/mFvoltage/kV
    C13.423.5
    C23.423.5
    C33.523.2
    C43.523
    C53.522.9
    C63.622.5
    C73.721.8
    C84.020.1
    C97.89.1
    C107.89.1
    C119.27.7
    下载: 导出CSV

    表  2  电源参数寻优域

    Table  2.   Power parameter optimization domain

    coil maximum
    capacitance/mF
    minimum
    capacitance/mF
    maximum
    voltage/kV
    minimum
    voltage/kV
    C1 3.54 3.26 25.3 21.7
    C2 3.54 3.26 25.3 21.7
    C3 3.64 3.36 25 21.4
    C4 3.64 3.36 24.8 21.2
    C5 3.64 3.36 24.7 21.1
    C6 3.75 3.45 24.2 20.8
    C7 3.85 3.55 23.5 20.1
    C8 4.16 3.84 21.7 18.5
    C9 8.43 7.17 10.1 8.1
    C10 8.43 7.17 10.1 8.1
    C11 9.94 8.46 8.5 6.9
    下载: 导出CSV

    表  3  电源参数优化结果

    Table  3.   Power supply parameter optimization results

    coil capacitance/mF voltage/kV
    C1 3.44 23.3
    C2 3.41 23.5
    C3 3.53 22.8
    C4 3.67 22.6
    C5 3.58 22.4
    C6 3.49 23.1
    C7 3.81 23.4
    C8 3.97 20.9
    C9 7.48 9.3
    C10 7.91 9.5
    C11 9.63 8.5
    下载: 导出CSV

    表  4  电源参数优化结果(电容值统一)

    Table  4.   Power supply parameter optimization results (uniform capacitance values)

    coilcapacitance/mFvoltage/kV
    C13.7222.4
    C23.7222.6
    C33.7222.3
    C43.7222.6
    C53.7222.1
    C63.7223.6
    C73.7223.1
    C83.7221.6
    C98.159.4
    C108.159.2
    C118.158.1
    下载: 导出CSV
  • [1] Tuszewski M. Field reversed configurations[J]. Nuclear Fusion, 1988, 28(11): 2033-2092. doi: 10.1088/0029-5515/28/11/008
    [2] Yoshimura S, Sugimoto S, Okada S. Computed multiple tomography for translated field reversed configuration plasma[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2510-2511. doi: 10.1109/TPS.2014.2321399
    [3] Zhang Shouyin, Intrator T P, Wurden G A, et al. Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner[J]. Physics of Plasmas, 2005, 12: 052513. doi: 10.1063/1.1899648
    [4] Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: a field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientific Instruments, 2003, 74(10): 4314-4323. doi: 10.1063/1.1606534
    [5] Intrator T P, Siemon R E, Sieck P E. Adiabatic model and design of a translating field reversed configuration[J]. Physics of Plasmas, 2008, 15: 042505. doi: 10.1063/1.2907165
    [6] Laberge M, Howard S, Richardson D, et al. Acoustically driven Magnetized Target Fusion[C]//2013 IEEE 25th Symposium on Fusion Engineering (SOFE). 2013: 1-7.
    [7] Freidberg J P. Plasma physics and fusion energy[M]. Cambridge: Cambridge University Press, 2007: 344-350.
    [8] Steinhauer L C. Review of field-reversed configurations[J]. Physics of Plasmas, 2011, 18: 070501. doi: 10.1063/1.3613680
    [9] Kirtley D, Milroy R. Fundamental scaling of adiabatic compression of field reversed configuration thermonuclear fusion plasmas[J]. Journal of Fusion Energy, 2023, 42: 30. doi: 10.1007/s10894-023-00367-7
    [10] Sun Qizhi, Yang Xianjun, Jia Yuesong, et al. Formation of Field Reversed Configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003
    [11] Francis Thio Y C, Knapp C E, Kirkpatrick R C, et al. A physics exploratory experiment on plasma liner formation[J]. Journal of Fusion Energy, 2001, 20(1/2): 1-11. doi: 10.1023/A:1019813528507
    [12] Okada S, Kitano K, Goto S. Axial magnetic compression of FRC plasma[J]. IEEJ Transactions on Fundamentals and Materials, 1999, 119(11): 1324-1329. doi: 10.1541/ieejfms1990.119.11_1324
    [13] Rej D J, Taggart D P, Baron M H, et al. High-power magnetic-compression heating of field-reversed configurations[J]. Physics of Fluids B: Plasmas Physics, 1992, 4(7): 1909-1919. doi: 10.1063/1.860043
    [14] Kitano K, Matsumoto H, Yamanaka K, et al. Advanced experiments on field-reversed configuration at Osaka[C]//Proceedings of the 1988 International Congress on Plasma Physics Combined Eith the 25th EPS Conference on Controlled Fusion and Plasma Physics, 1998.
    [15] Rej D J, Waganaar W J. Performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment[C]//Eighth IEEE International Conference on Pulsed Power. 1991: 217-220.
    [16] Grabowski C, Gale D, Parker J, et al. Design of FRC formation and liner compression experiment (F-LINCX) at AFRL[C]//2005 IEEE Pulsed Power Conference. 2005: 304-307.
    [17] Jorling J, Hofmann J, Weise T H G G, et al. 49 MJ pulsed power facility to produce high magnetic fields[C]//2007 16th IEEE International Pulsed Power Conference. 2007: 1513-1516.
    [18] Debray F, Frings P. State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”[J]. Comptes Rendus Physique, 2013, 14(1): 2-14. doi: 10.1016/j.crhy.2012.11.002
    [19] Ding H F, Jiang C X, Ding T H, et al. Prototype test and manufacture of a modular 12.5 MJ capacitive pulsed power supply[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1676-1680. doi: 10.1109/TASC.2009.2039785
    [20] 李传. ITER极向场变流器高功率大电流电抗器的设计与研制[D]. 武汉: 华中科技大学, 2016: 40-43

    Li Chuan. Research and design on high-power large-current reactor applied to ITER poloidal field converter power supply[D]. Wuhan: Huazhong University of Science & Technology, 2016: 40-43
    [21] 张之翔. 电磁学中几个简单问题里的椭圆积分[J]. 大学物理, 2002, 21(4):22-24 doi: 10.3969/j.issn.1000-0712.2002.04.007

    Zhang Zhixiang. Elliptical integrals in the expression of results of some simple problems in electromagnetics[J]. College Physics, 2002, 21(4): 22-24 doi: 10.3969/j.issn.1000-0712.2002.04.007
    [22] De Jong K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975: 1-47.
    [23] 胡妙娟, 胡春, 钱锋. 遗传算法中选择策略的分析[J]. 计算机与数字工程, 2006, 34(3):1-3,57 doi: 10.3969/j.issn.1672-9722.2006.03.001

    Hu Miaojuan, Hu Chun, Qian Feng. General analysis of selection strategy in genetic algorithm[J]. Computer & Digital Engineering, 2006, 34(3): 1-3,57 doi: 10.3969/j.issn.1672-9722.2006.03.001
    [24] Zhang Qinglong, Rao Bo, Yang Yong, et al. Analysis and design of in-vessel magnetic compression coil system for HFRC[J]. Fusion Engineering and Design, 2023, 194: 113751. doi: 10.1016/j.fusengdes.2023.113751
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  42
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2025-02-10
  • 录用日期:  2025-02-10
  • 网络出版日期:  2025-03-01
  • 刊出日期:  2025-03-15

目录

    /

    返回文章
    返回