Research progress on high-brightness electron source drive laser system
-
摘要: 光阴极电子源是先进加速器装置最为关键的部件,驱动激光的品质参数是电子源性能的首要决定因素。近年来,电子加速器装置的束流指标不断提升,要求驱动激光具备高功率、高稳定性等特点和时空分布调控的功能,这对驱动激光系统的放大、选频、倍频、时空整形等模块提出了更高的需求。国内外主要研究机构根据其电子源的需求采用了相应的技术路线,在重复频率、激光波长、单脉冲能量和时空分布整形等方面各有特点。本文介绍了高亮度电子源驱动激光的主要技术路线和国内外发展现状,分析了典型的驱动激光方案,并讨论了驱动激光系统的未来发展趋势,以期为相关装置的规划和建设提供参考。Abstract: Photocathode electron sources play a crucial role in advanced accelerator facilities. Recent advancements in electron accelerator facilities have continually pushed the parameter boundaries of electron sources, which in turn necessitate photocathode drive lasers that possess high power, high stability, and the ability to control spatiotemporal distributions. For such a purpose, lots of efforts have been made to achieve high-quality amplification, harmonic generation, and spatiotemporal shaping of the drive laser systems. This paper presents a comprehensive review of the primary technological approaches and status of drive lasers for high-brightness electron sources worldwide. Analysis of representative drive laser schemes and discussion on the future trends are also included, aiming to provide a helpful reference for planning and developing high-performance photocathode drive laser system.
-
Key words:
- photocathode laser /
- laser amplification /
- laser harmonic generation /
- laser shaping /
- laser stability
-
高增益[1-3]是速调管放大器一个重要的发展方向,增大输出腔的输出功率是提高增益的一种有效方式。如果反射功率为零,输出波导与输出腔的耦合就达到了匹配状态,输出腔的输出功率就达到了最大值。文献[4]给出了输出腔等效电路和输出功率计算公式。这里的输出腔等效电路采用变压器模型来研究输出腔与输出波导之间的耦合。输出功率计算公式是一种典型的传统算法。这种输出功率的算法得到了广泛的应用,基于圆盘模型的一维粒子模拟软件的输出功率的计算就是采用这种算法。按照传统算法,输出功率与工作频率无关,只与输出腔的间隙电压、特性阻抗和外观品质因数有关。本文提出了新的等效电路和输出功率计算公式[5-6]。输出腔等效电路以感应电流作为激励源,输出腔采用电阻、电容和电感组成并联电路,采用互感模型来研究输出腔与输出波导之间的耦合,采用传输线理论研究输出波导中的入射波和反射波。因为该模型为自洽模型,腔体通过电子束反馈回自身的效应通过感应电流来考虑,所以电子束阻抗在模型中不是必须的。当输出波导中的反射波为零时,带有调制电子束的输出腔与输出波导达到匹配状态。按照匹配理论,在匹配状态时,输出腔的工作频率与输出腔的谐振频率之间存在频率差。频率差是由输出腔的特性阻抗,感应电流和间隙电压决定的,同时还推出了匹配状态下输出腔有载品质因数的计算公式。从传统的输出腔的等效电路模型出发,无法推出完全匹配时输出腔谐振频率与有载品质因数的表达式。本文建立了较完整的带有电子束和输出波导的输出腔匹配理论即最大输出功率理论,推导了输出波导与带有电子束的输出腔之间任意的耦合和完全匹配这两种情形时输出微波功率和间隙电压关系的公式。将匹配情形时从含有互感的等效电路模型推出的输出功率的公式与传统的经典理论的公式进行比较,发现两者近似相等。
这套理论不仅得出了一般情形时输出功率与间隙电压等参量的关系式,而且可以得出匹配情形时(输出波导内反射波为零)的输出功率与间隙电压等参量的关系式,以及匹配情形时的工作频率和输出腔的谐振频率两者之间关系式和有载品质因数的表达式。根据这两个表达式就可以计算出输出腔的谐振频率和外观品质因数,这两个参数可以作为输出腔的设计依据。
1. 腔体模型
图1给出了输出腔的等效电路模型[4-9]。图1中
ig 是在与腔体耦合的输出波导中产生的出射电流,ir 是波导中的反向电流,Z0 是波导特性阻抗,R是腔体并联电阻,L是腔体电感,C是腔体电容,i是腔体电路中流过互感M的电流,id=M′i1 是腔体电路中由于调制电子束而引起的电流,通常被称为感应电流,M′ 是电子束和输出腔之间的耦合系数,i1 是束流的一次谐波。腔体和波导通过互感M互相耦合。输出腔阻抗Zcav 由腔体并联阻抗R,腔体电容C,腔体电感L或者由R、腔体谐振频率f0 、工作频率f和腔体特性阻抗R/RQQ 给出1Zcav=1R+jωC+1jωL=1R+j(ff0−f0f)1R/RQQ (1) 这两种定义通过
R/RQQ=1/12π f02π f0C 和(2π f0)2CL=1 相联系。腔体间隙电压定义为在位置矢量r=(x,y,z) 处腔体射频电场沿着某个感兴趣的路径S瞬时线积分Vgap(t)=∫SE(r,t)⋅dl (2) 腔体间隙电压是图1中腔体阻抗两端的电压,由下式给出
Vgap=−Zcav(id−i) (3) 2. 外耦合模型
这里我们将定义输出腔与外部波导耦合的模型。外部波导中同时存在带有电流ig和电压igZ0的出射波以及电流
−ir 和电压irZ0的反射波。利用图1和互感的定义,我们可以得出腔体-波导电路中电流的表达式ig+ir=jωMZ0i (4) ir−ig=(id−i)ZcavjωM (5) 式中:
ω=2πf 是工作角频率。2.1 有载品质因数Q
首先我们将给出没有电子束和外部微波源关闭时的有载品质因数Q。冷腔有载品质因数定义为
Ql=ωEstoredPloss (6) 式中:
Estored 是腔体中平均储能,表示为Estored=141ω2C|iC|2+14L|iL|2 (7) 式中:
iC 是流过电容器的电流,iL 是流过电感的电流,平均功率损耗为Ploss=PG+Pe=12R|iR|2+12Z0|ig|2 (8) 式中:
iR 是流过腔体电阻的电流,PG 为腔体电阻损耗功率,Pe 为从腔体泄漏到波导中的功率。在无反射波的情形下(ir=0) 有ig=−(id−i)ZcavjωM (9) iR=−Zcav(id−i)1R (10) iL=−Zcav(id−i)1jωL (11) iC=−Zcav(id−i)jωC (12) 我们定义复耦合系数
β 为β=Z0Zcavω2M2 (13) 根据腔体与波导耦合系数
β′ 的定义β′=PePG=Z0Rω2M2=βRZcav (14) 没有电子束的有载品质因数为
QL=Q011+β′=Q011+βR/βRZcavZcav (15) 其中固有品质因数
Q0=ωCR2(1+1ω2CL) (16) 2.2 反射微波功率
反射微波功率为
Pr=12Z0|ir|2 (17) 从式(4)和式(5)中消去出射波,我们可以得到腔内驱动电流为
i=2ir−idZcavjωMjωMZ0(1+β) (18) 这个表达式可以用来推出间隙电压
Vgap=−Zcav(id−i)=−idZcav1+β−j2irωM1+ββ (19) 或者反过来,波导中的反射波为
ir=−1+βj2ωMβ(Vgap+idZcav1+β) (20) 从这个表达式可以导出一般情形时反射微波功率为
Pr=18|1+β|2|Vgap+idZcav1+β|2|Zcav||β| (21) 2.3 输出微波功率
输出微波功率为
Pg=12Z0|ig|2 (22) 下面分两种情形讨论。
1)当复耦合系数
β 不等于1时:从式(4)和式(5)中消去反射波,我们可以得到腔内驱动电流为i=2ig+idZcavjωMjωMZ0(1−β) (23) 这个表达式可以用来推出间隙电压
Vgap=−Zcav(id−i)=−idZcav1−β−j2igωM1−ββ (24) 或者反过来,波导中的出射波为
ig=−1−βj2ωMβ(Vgap+idZcav1−β) (25) 从这个表达式可以导出输出波导中的输出微波功率为
Pg1=18|1−β|2|Vgap+idZcav1−β|2|Zcav||β| (26) 2)当复耦合系数
β 等于1时:从式(4)和式(5)中消去反射波,我们可以得到出射电流为ig=−idZcav2jωM (27) 将式(27)代入式(22)可以导出输出微波功率为
Pg2=18|id|2|Zcav| (28) 3. 匹配耦合的特殊情形
如果输出波导中没有反射波,波导与腔体的耦合就达到了匹配。因为匹配将导致输出微波功率达到最大值,所以波导与腔体的匹配是波导和腔体的设计目标。
3.1 输出微波功率
从式(4)和式(5)得到
2ir=ijωMZ0+(id−i)ZcavjωM (29) 令
ir 为零可以导出i(1+β)=idβ (30) 式(30)为匹配条件。在这种情形下,间隙电压为
Vgap=−Zcavid1+β (31) 或者
Vgap+idZcav1−β=2Vgapββ−1 (32) 与这个条件相对应,匹配时输出微波功率为
Pg1=12|β||Vgap|2|Zcav| (33) 对于匹配条件式(30)必须满足,或者
β=iid−i (34) 匹配时输出微波功率又可以写为
Pg1=12Z0|ig|2=12ω2M2Z0|β|2|1+β|2|id|2 (35) 由
β 的定义式(13)和式(33)与式(15)可得Pg1=12|β||Zcav||Vgap|2=12|Vgap|2Q0−QLQLR (36) 3.2 匹配时的微波频率与有载品质因数
通过比较复耦合系数
β 的定义式(13)和式(31),可以得出ω2M2=Z0−id/−idVgapVgap−1/1ZcavZcav (37) 这个方程等式左边为实数,右边通过工作频率的合适的选择也可以成为实数。定义
(δ+1)f=f0 ,如果δ 满足δ=R/RQQ2Im(id/idVgapVgap) (38) 则式(37)右边成为实数。匹配时有载品质因数为
QLt=Q011+Re(−id/−idVgapVgap−1/1ZcavZcav)R (39) 4. 从含有互感的等效电路模型推出的理论与经典理论的比较
从谐振腔的一般理论[4]可以得出
Pg=12Re(idV∗gap)=12|Vgap|21(R/RQQ)Qext (40) 这里我们把它称为经典理论。对于输出腔来说,
Qext 远小于Q0 ,QL≈Qext ,R/RQQ≈R/R(Q0−QL)(Q0−QL) ,匹配情形时的式(36)与式(40)近似相等。一般情形时的式(26)与式(40)只有通过数值计算进行比较。5. 输出腔的理论计算与粒子模拟的比较
单重入输出腔的2维粒子模拟结构图如图2所示。图2中输出腔外径为5.6 cm,输出同轴线的内外径分别为5.2 cm和5.5 cm,特性阻抗
Z0 为3.365 Ω,间隙距离为1.4 cm,ra 和rb 分别等于2.4 cm和2.8 cm,为环形电子束的内半径和外半径,Rc 等于3.0 cm为漂移管半径,鼻锥厚度为6 mm。在粒子模拟中束压为724.4 kV,束流为8[1+1.2sin(2πft)] kA,外加均匀磁场为1.2 T。输入腔谐振频率f0 为2.933 GHz,特性阻抗R/RQQ 为6.727 Ω,固有品质因数Q0 为4 406.7,外观品质因数Qext 为18.8,图1中R为29 643.871 Ω,L为0.365×10−9 H,C为8.07 pF。当基波电流调制系数为1.2时,采用2维粒子模拟计算了输出微波功率与工作频率关系,计算结果如图3所示。从图3可知,当工作频率为2.906 GHz时,输出微波功率达到最大值;输出腔间隙耦合系数为0.635 9,基波电流为−9.6 kA,间隙电压为(6.767×105+2.742×105i) kV,复耦合系数为
3.5276 ×10−2+2.875 3 i,互感为1.1299 ×10−9 H,腔体阻抗为(4.461+3.636×10−2 i)Ω。根据式(38)可以得出δ 为0.010 6,所以匹配时工作频率为2.902 3 GHz,工作频率的理论值与粒子模拟的工作频率相差3.7 MHz。根据式(39)可以得出匹配时有载品质因数理论值为19.18,而粒子模拟的有载品质因数为18.72,两者相差0.46。按照式(21)计算的反射功率为1.5962 MW。按照式(26)计算的输出微波功率为2.058 GW,粒子模拟为1.935 GW,两者相差0.123 GW。按照式(36)计算的输出微波功率为2.107 6 GW。6. 结 论
匹配理论不仅得出了一般情形时输出功率与间隙电压等参量的关系式,而且可以得出匹配情形时(输出波导内反射波为零)的输出功率与间隙电压等参量的关系式,以及匹配情形时的工作频率和输出腔的谐振频率两者之间关系式和有载品质因数的表达式。根据这两个表达式就可以计算出输出腔的谐振频率和外观品质因数,这两个参数可以作为输出腔的设计依据。匹配情形时从含有互感的等效电路模型推出的输出功率的计算结果与经典理论的计算结果近似相等。
-
图 19 EuXFEL注入器布局图[16]
Figure 19. Injector building layout at EuXFEL[16]
表 1 典型装置Ⅰ类放大器输出参数
Table 1. Output parameters of class Ⅰ amplifiers in typical facilities
facility amplifier center wavelength/nm pulse energy/mJ repetition rate/Hz SXFEL Ti:sapphire 800.0 10.0 10/50 HALF Ti:sapphire 800.0 13.0 1~100 TTX Ti:sapphire 800.0 200.0 10 SAPS Ti:sapphire 800.0 13.0 1~100 PAL-XFEL Ti:sapphire 770.0 20.8 120 FERMI Ti:sapphire 783.0 18.0 50 SwissFEL Yb:CaF2 1 041.3 2.4 10 SuperKEKB Yb-doped fiber/Nd:YAG hybrid 1 064.0 20.0 1~25 表 2 典型装置Ⅱ类放大器输出参数
Table 2. Output parameters of class Ⅱ amplifiers in typical facilities
facility amplifier center wavelength/nm pulse energy/μJ repetition rate/MHz FLASH Yb-doped fiber/Yb:YAG hybrid 1030 180 1 EuXFEL Nd:YVO4 1064 50 0.5/1.13/2.25/4.5 LCLS-II Yb-doped fiber 1030 50 0~0.929 DC-SRF-II Yb-doped fiber 1030 20 1 S3FEL Yb-doped fiber 1030 50 1 SHINE Yb-doped fiber 1030 150 1 表 3 典型装置Ⅲ类放大器输出参数
Table 3. Output parameters of class Ⅲ amplifiers in typical facilities
facility amplifier center wavelength/nm average power/W repetition rate/MHz Cornell-ERL Yb-doped fiber 1040 167.0 1300 PAPS Yb-doped fiber 1030 116.3 81.25/100/ 1300 KEK-ERL Yb-doped fiber (solid-state oscillator) 1064 50.0 1300 DC-SRF-II Yb-doped fiber 1030 99.3 81.25 表 4 典型装置倍频模块输出参数
Table 4. Output parameters of harmonic generation module in typical facilities
facility frequency conversion method crystal center wavelength/nm pulse energy repetition rate FLASH FHG LBO+BBO 257.5 6.1 μJ/11.2 μJ 1 MHz LCLS-II FHG BBO 257.5 300 nJ 0~0.929 MHz S3FEL FHG BBO 257.5 2 μJ 1 MHz SHINE FHG LBO+BBO 257.5 2 μJ 1 MHz SwissFEL FHG BBO 260 600 μJ 10 Hz EuXFEL FHG LBO+BBO 266 5 μJ 4.5 MHz SuperKEKB FHG BBO 266 1 mJ 25 Hz TTX THG BBO 266.7 1 mJ 10 Hz SXFEL THG BBO 266.7 1.2 mJ 10 Hz/50 Hz HALF THG BBO 266.7 2 mJ 1~100 Hz SAPS THG BBO 266.7 2 mJ 1~100 Hz FERMI THG BBO 261 2.3 mJ 50 Hz DC-SRF-II SHG LBO 515 2 μJ/170 nJ 1 MHz/81.25 MHz Cornell-ERL SHG LBO 520 95 nJ 1.3 GHz KEK-ERL SHG LBO 532 0.77 nJ 1.3 GHz PAPS SHG LBO 515 492 nJ 81.25 MHz -
[1] 黄森林, 刘克新, 赵夔, 等. 直流-射频超导光阴极电子枪[J]. 科学通报, 2023, 68(9):1036-1046 doi: 10.1360/TB-2022-1091Huang Senlin, Liu Kexin, Zhao Kui, et al. DC-SRF photocathode gun[J]. Chinese Science Bulletin, 2023, 68(9): 1036-1046 doi: 10.1360/TB-2022-1091 [2] 刘志, 万唯实, 王东. 中国光子大科学装置的发展[J]. 自然杂志, 2024, 46(3):161-172 doi: 10.3969/j.issn.0253-9608.2024.03.001Liu Zhi, Wan Weishi, Wang Dong. Development of large-scale user facilities for photon science in China[J]. Chinese Journal of Nature, 2024, 46(3): 161-172 doi: 10.3969/j.issn.0253-9608.2024.03.001 [3] Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76 [4] Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z [5] Cinquegrana P, Demidovich A, Kurdi G, et al. The seed laser system of the FERMI free-electron laser: design, performance and near future upgrades[J]. High Power Laser Science and Engineering, 2021, 9: e61. doi: 10.1017/hpl.2021.49 [6] Lee J, Ko I S, Han J H, et al. Parameter optimization of PAL-XFEL injector[J]. Journal of the Korean Physical Society, 2018, 72(10): 1158-1165. doi: 10.3938/jkps.72.1158 [7] Milne C J, Schietinger T, Aiba M, et al. SwissFEL: the Swiss X-ray Free Electron Laser[J]. Applied Sciences, 2017, 7: 720. doi: 10.3390/app7070720 [8] Hutton A. Energy-recovery linacs for energy-efficient particle acceleration[J]. Nature Reviews Physics, 2023, 5(12): 708-716. doi: 10.1038/s42254-023-00644-6 [9] Zhao Z T, Wang Z, Feng C, et al. Energy recovery linac based fully coherent light source[J]. Scientific Reports, 2021, 11: 23875. doi: 10.1038/s41598-021-03354-0 [10] Akemoto M, Arakawa D, Asaoka S, et al. Construction and commissioning of the compact energy-recovery linac at KEK[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 877: 197-219. [11] Filippetto D, Musumeci P, Li Renkai, et al. Ultrafast electron diffraction: Visualizing dynamic states of matter[J]. Reviews of Modern Physics, 2022, 94: 045004. doi: 10.1103/RevModPhys.94.045004 [12] Xie Huamu. Overview of the semiconductor photocathode research in China[J]. Micromachines, 2021, 12: 1376. doi: 10.3390/mi12111376 [13] Zhou Feng, Adolphsen C, Dowell D, et al. Overview of CW electron guns and LCLS-II RF gun performance[J]. Frontiers in Physics, 2023, 11: 1150809. doi: 10.3389/fphy.2023.1150809 [14] Feng Lie, Li Chunlei, Liu Bo, et al. Drive laser system for shanghai soft X-ray Free Electron Laser[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 4403-4405. [15] Zhang Rui, Kumano H K, Toyotomi N, et al. Laser system for SuperKEKB RF gun in phase III commissioning[C]//Proceedings of the 13th International Particle Accelerator Conference. 2022: 2914-2916. [16] Winkelmann L, Choudhuri A, Grosse-Wortmann U, et al. The European XFEL photocathode laser[C]//Proceedings of the 39th International Free Electron Laser Conference. 2019: 423-426. [17] Zhang Baichao, Li Xiaoshen, Liu Qi, et al. High repetition-rate photoinjector laser system for S3FEL[J]. Frontiers in Physics, 2023, 11: 1181862. doi: 10.3389/fphy.2023.1181862 [18] Zhao Zhi, Dunham B M, Bazarov I, et al. Generation of 110 W infrared power and 65W green power from a 1.3-GHz sub-picosecond fiber amplifier[C]//Proceedings of 2012 Conference on Lasers and Electro-Optics. 2012: 1-2. [19] Zhao Zhi, Dunham B M, Wise F W. Generation of 167 W infrared and 124 W green power from a 1.3-GHz, 1-ps rod fiber amplifier[J]. Optics Express, 2014, 22(21): 25065-25070. doi: 10.1364/OE.22.025065 [20] Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 2017, 25(7): 8138-8143. doi: 10.1364/OE.25.008138 [21] 李孝燊, 徐金强, 孙大睿. 高能所光阴极驱动激光系统研制[J]. 强激光与粒子束, 2018, 30:021001 doi: 10.11884/HPLPB201830.170344Li Xiaoshen, Xu Jinqiang, Sun Darui. Drive laser system for a photocathode at IHEP[J]. High Power Laser and Particle Beams, 2018, 30: 021001 doi: 10.11884/HPLPB201830.170344 [22] Li Xiaoping, Wang Jiuqing, Xu Jinqiang, et al. Constructions and preliminary HV conditioning of a photocathode direct-current electron gun at IHEP[J]. Chinese Physics Letters, 2017, 34: 072901. doi: 10.1088/0256-307X/34/7/072901 [23] Xu Hang, Xu Jinqiang, Li Xiaoping, et al. High power drive laser system for photocathode at IHEP[J]. Optics Express, 2021, 29(18): 29550-29556. doi: 10.1364/OE.438199 [24] 吴桐, 徐航, 徐金强, 等. 强流目标的DC-SRF-II光阴极驱动激光系统设计[J]. 强激光与粒子束, 2022, 34:104018 doi: 10.11884/HPLPB202234.220244Wu Tong, Xu Hang, Xu Jinqiang, et al. Design of the photocathode drive laser system for high current electron beam operation of DC-SRF-II gun[J]. High Power Laser and Particle Beams, 2022, 34: 104018 doi: 10.11884/HPLPB202234.220244 [25] Jia H, Li T, Wang T, et al. High performance operation of a direct-current and superconducting radio-frequency combined photocathode gun[DB/OL]. arXiv preprint arXiv: 2406.00659, 2024. [26] Wang Tianyi, Xu Hang, Liu Zhongqi, et al. Advanced drive laser system for a high-brightness continuous-wave photocathode electron gun[J]. Optics Express, 2024, 32(6): 9699-9709. doi: 10.1364/OE.515063 [27] Li Chunlei, Dai Xiaolei, Deng Haixiao, et al. Photoinjector drive laser temporal shaping for Shanghai Soft X-ray Free Electron Laser[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 1674-1677. [28] Li Chen, Akcaalan O, Frede M, et al. Photocathode laser development for superconducting X-ray ree electron lasers at DESY[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 3599-3601. [29] Gilevich S, Alverson S, Carbajo S, et al. The LCLS-II photo-injector drive laser system[C]//Proceedings of 2020 Conference on Lasers and Electro-Optics. 2020: 1-2. [30] Schietinger T, Pedrozzi M, Aiba M, et al. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility[J]. Physical Review Accelerators and Beams, 2016, 19: 100702. doi: 10.1103/PhysRevAccelBeams.19.100702 [31] 李成, 汪文星, 李伟伟, 等. 光阴极微波电子枪驱动激光整形与传输系统[J]. 强激光与粒子束, 2021, 33:094002 doi: 10.11884/HPLPB202133.210091Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002 doi: 10.11884/HPLPB202133.210091 [32] Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches[J]. Journal of Plasma Physics, 2012, 78(S4): 429-431. [33] Liu Fangming, Huang Senlin, Si Shangyu, et al. Generation of picosecond pulses with variable temporal profiles and linear polarization by coherent pulse stacking in a birefringent crystal shaper[J]. Optics Express, 2019, 27(2): 1467-1478. doi: 10.1364/OE.27.001467 [34] Mohr C, Winkelmann L, Chu H, et al. Flexible pulse-train amplitude shaping for the European XFEL photoinjector laser[C]//Proceedings of the 8th EPS-QEoD Europhoton Conference. 2018. [35] Zhao Zhi, Dunham B M, Wise F W. Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier[J]. Journal of the Optical Society of America B, 2014, 31(1): 33-37. doi: 10.1364/JOSAB.31.000033 [36] Zhang R, Zhou X, Yoshida M, et al. Study on stable and high output energy laser system for RF-gun at SuperKEKB injector[C]//Proceedings of the 14th Annual Meeting of Particle Accelerator Society of Japan. 2017: 1201-1204. [37] 姜世民, 陆志军, 刘星光, 等. C波段光阴极电子枪驱动激光整形研究[J]. 强激光与粒子束, 2024, 36:104003 doi: 10.11884/HPLPB202436.240162Jiang Shimin, Lu Zhijun, Liu Xingguang, et al. Study of drive laser shaping system for C-band photocathode RF gun[J]. High Power Laser and Particle Beams, 2024, 36: 104003 doi: 10.11884/HPLPB202436.240162 [38] Zhang Haiming, Wang Jian, Liu Zhengzheng, et al. Design of HUST-UED femtosecond laser delivery system[C]//Proceedings of SPIE 12959, AOPC 2023: Laser Technology and Applications; and Optoelectronic Devices and Integration. 2023: 129590A. [39] Yan L X, Du Yingchao, Du Qiang, et al. TW Laser system for Thomson scattering X-ray light source at Tsinghua University[J]. Chinese Physics C, 2009, 33: 154. [40] Hong J, Han J H, Park S J, et al. A study on low emittance injector and undulator for PAL-XFEL[J]. High Power Laser Science and Engineering, 2015, 3: e21. doi: 10.1017/hpl.2015.18 [41] Penco G, Allaria E, Badano L, et al. Optimization of a high brightness photoinjector for a seeded FEL facility[J]. Journal of Instrumentation, 2013, 8: P05015. doi: 10.1088/1748-0221/8/05/P05015 [42] Zhou Xiangyu, Natsui T, Yoshida M, et al. Ytterbium fiber and disk laser of RF gun for SuperKEKB[C]//Proceedings of the 5th International Particle Accelerator Conference. 2014: 2415-2417. [43] Zhang Rui, Zhou Xiangyu, Honda Y, et al. Hybrid Yb/Nd laser system for RF gun in SuperKEKB phase II and phase III commissioning[C]//Proceedings of the10th International Particle Accelerator Conference. 2019: 3663-3666. [44] Zhang Rui, Zhou Xiangyu, Kumano H, et al. Yb/Nd hybrid laser system for RF gun in SUPERKEKB phase II[C]//Proceedings of the 15th Annual Meeting of Particle Accelerator Society of Japan. 2018. [45] Zhang Rui, Yoshida M, Natsui T, et al. Improvements of the laser system for RF-gun at SuperKEKB injector[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1598-1600. [46] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273 [47] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63 [48] Chen Shengping, Chen Hongwei, Hou Jing, et al. 100 W all fiber picosecond MOPA laser[J]. Optics Express, 2009, 17(26): 24008-24012. doi: 10.1364/OE.17.024008 [49] Dupriez P, Finot C, Malinowski A, et al. High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs[J]. Optics Express, 2006, 14(21): 9611-9616. doi: 10.1364/OE.14.009611 [50] Limpert J, Deguil-Robin N, Manek-Hönninger I, et al. High-power picosecond fiber amplifier based on nonlinear spectral compression[J]. Optics Letters, 2005, 30(7): 714-716. doi: 10.1364/OL.30.000714 [51] Honda Y. Development of a photo-injector laser system for KEK ERL test accelerator[C]//Proceedings of the 3rd International Particle Accelerator Conference. 2012: 1530-1532. [52] Cui Zijian, Sun Mingying, Liu De’an, et al. High-peak-power picosecond deep-UV laser sources[J]. Optics Express, 2022, 30(24): 43354-43370. doi: 10.1364/OE.474513 [53] Turcicova H, Novak O, Muzik J, et al. Laser induced damage threshold (LIDT) of β-barium borate (BBO) and cesium lithium borate (CLBO)-overview[J]. Optics & Laser Technology, 2022, 149: 107876. [54] Mironov S Y, Andrianov A V, Gacheva E I, et al. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators[J]. Physics-Uspekhi, 2017, 60(10): 1039-1050. doi: 10.3367/UFNe.2017.03.038143 [55] Chung M, Qin H, Davidson R C. Generalized Kapchinskij-Vladimirskij 的的 distribution and envelope equation for high-intensity beams in a coupled transverse focusing lattice[J]. Physical Review Letters, 2009, 103: 224802.Chung M, Qin H, Davidson R C. Generalized Kapchinskij-Vladimirskij 的的 distribution and envelope equation for high-intensity beams in a coupled transverse focusing lattice[J]. Physical Review Letters, 2009, 103: 224802 [56] Kuzmin I, Mironov S, Gacheva E, et al. Shaping triangular picosecond laser pulses for electron photoinjectors[J]. Laser Physics Letters, 2019, 16: 015001. doi: 10.1088/1612-202X/aaef95 [57] Danailov M B, Demidovich A, Ivanov R, et al. Laser systems for next generation light sources[C]//Proceedings of the 23rd Particle Accelerator Conference. 2009: 122-126. [58] Danailov M B, Demidovich A, Ivanov R, et al. Performance of the Fermi FEL photoinjector laser[C]//Proceedings of the 29th International Free Electron Laser Conference. 2008: 358-361. [59] Tournois P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Optics Communications, 1997, 140(4/6): 245-249. [60] Froehly C, Colombeau B, Vampouille M. II shaping and analysis of picosecond light pulses[J]. Progress in Optics, 1983, 20: 63-153. [61] 刘芳铭. 光阴极驱动激光时空任意整形研究[D]. 北京: 北京大学, 2020Liu Fangming. Research on spatiotemporal arbitrary shaping of photocathode driven laser[D]. Beijing: Peking University, 2020 [62] Luiten O J, van der Geer S B, de Loos M J, et al. How to realize uniform three-dimensional ellipsoidal electron bunches[J]. Physical Review Letters, 2004, 93: 094802. doi: 10.1103/PhysRevLett.93.094802 [63] Sharma A K, Tsang T, Rao T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses[J]. Physical Review Accelerators and Beams, 2009, 12: 033501. doi: 10.1103/PhysRevSTAB.12.033501 [64] 冯立文, 王天一, 贾豪彦, 等. 北京大学DC-SRF-II注入器光阴极驱动激光系统[J]. 强激光与粒子束, 2022, 34:104016 doi: 10.11884/HPLPB202234.210343Feng Liwen, Wang Tianyi, Jia Haoyan, et al. Peking University’s DC-SRF-II photoinjector drive laser system[J]. High Power Laser and Particle Beams, 2022, 34: 104016 doi: 10.11884/HPLPB202234.210343 [65] Mironov S Y, Potemkin A K, Gacheva E I, et al. Shaping of cylindrical and 3D ellipsoidal beams for electron photoinjector laser drivers[J]. Applied Optics, 2016, 55(7): 1630-1635. doi: 10.1364/AO.55.001630 [66] Rublack T, Good J, Khojoyan M, et al. First results attained with the quasi 3-D ellipsoidal photo cathode laser pulse system at the high brightness photo injector PITZ[C]//Proceedings of the 6th International Particle Accelerator Conference (IPAC2015). 2015: 1522-1525. [67] Mironov S Y, Poteomkin A K, Gacheva E I, et al. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating[J]. Laser Physics Letters, 2016, 13: 055003. doi: 10.1088/1612-2011/13/5/055003 [68] Prat E, Abela R, Aiba M, et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam[J]. Nature Photonics, 2020, 14(12): 748-754. doi: 10.1038/s41566-020-00712-8 [69] Kaiser F, Köhler S, Peters F, et al. UV laser beam stabilization system for the European XFEL electron injector laser beamline[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics (CLEO). 2015: 1-2. [70] Zhang R, Yoshida M, Zhou X, et al. Improvement of stable and high output energy laser system for RF-gun at SUPERKEKB injector. Chiba, Japan, 2016. [71] Alkeskjold T T, Laurila M, Scolari L, et al. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Optics Express, 2011, 19(8): 7398-7409. doi: 10.1364/OE.19.007398 [72] Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008. doi: 10.1364/OE.20.003997 [73] Laurila M, Jørgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753. doi: 10.1364/OE.20.005742 [74] Laurila M, Saby J, Alkeskjold T T, et al. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser[J]. Optics Express, 2011, 19(11): 10824-10833. doi: 10.1364/OE.19.010824 -