Water-cooling system development and its high precision water temperature control for Anhui University Free Electron Laser & High Magnetic Field device
-
摘要: 介绍了安徽大学正在建设的强光磁试验装置的整体布局,详细分析了装置的稳定运行对水冷系统的设计要求及难点,根据需求完成了整个装置的水冷系统设计研制,装置的水冷系统一共包含了两路独立的水冷机组系统,设计温度分别为(42±0.1)℃与(25±0.5)℃,并且可在一定范围内调节。装置水冷控制系统基于EPICS 框架开发,温度调节及控制功能通过PLC程序实现,PID参数配置通过PID调节器实现。控制系统的软件开发主要是在EPICS环境下实现对设备参数的设定和状态数据的回读,并将历史数据存入Archiver Appliances数据库中。试运行期间水冷控制系统的温度控制精度达到了(42±0.03)℃和(25±0.08)℃,符合设计要求,运行期间该系统稳定可靠,可以很好地保障装置安全稳定运行。Abstract: This paper introduces the overall layout of the Free Electron Laser & High Magnetic Field device under construction at Anhui University, and analyzes in detail the design requirements and difficulties in development of the water-cooling system for stable operation of the device, and presents the design of the water-cooling system for the whole device. The water-cooling system contains two independent water-cooling unit systems, with the design temperatures of (42±0.1)℃ and (25±0.5)℃ respectively, which can be adjusted within a certain range. The device water-cooling control system is developed based on EPICS (Experimental Physics and Industrial Control System) framework, the temperature regulation control function is realized by PLC (Programmable Logic Controller) program, and the PID (Proportion Integration Differentiation) parameter configuration is realized by PID regulator. The software development of the control system is mainly to realize the setting of the device parameters and the reading back of the status data under the EPICS environment, and to store the historical data into the Archiver Appliances database. The temperature control accuracy of the water-cooling control system during the trial operation reaches (42±0.03)℃ and (25±0.08)℃, which is in line with the design requirements, and the system is stable and reliable during the operation, which can well guarantee the safe and stable operation of the device.
-
Key words:
- Free Electron Laser & High Magnetic Field device /
- water-cooling system /
- control system /
- EPICS /
- PID
-
在加速器驱动嬗变研究装置(CiADS)[1-2]的超导直线加速器中,单根传输线的功率需求达到了上百千瓦,此时已经不适合继续选择同轴馈管进行功率传输。在这种情况下,考虑到实际应用频率为650 MHz,本文采用WR1500矩形波导作为主馈线[3-4]。为了消除矩形波导引入带来的误差,实现微波设备和负载端的指向微调,必须要考虑软波导[5]。为提高射频系统的运行稳定性,本文对WR1500软波导的电性能和热力学性能进行了综合研究,旨在为CiADS传输线设计提供参考。
1. 实验测试平台
1.1 测试平台原理
为了测试软波导在实际应用场景中的性能,需要对软波导进行几十甚至上百千瓦功率的老炼测试。这对于一般的连续波设备及负载提出了很高的要求。而在高功率输入耦合器和介质窗的老炼中,采用了一种基于行波谐振环或者驻波谐振环的老炼方法,可以有效降低离线老炼的功率需求[6-8]。单端输入的行波谐振环等效功率增益低,增益一般仅为20倍左右[9],而驻波谐振老炼方法虽然增益高,但是该方法中使用的可移动短路板结构复杂且高功率承受能力差,会导致驻波谐振老炼的稳定性较差。基于此,我们设计了一种基于谐振环的双端口输入的高功率老炼测试平台,该方案结构简单可靠,且有望能大幅度提高等效功率增益。测试平台结构如图1所示,谐振环主体为一个10 dB波导定向耦合器。
波导定向耦合器可以等效为一个四端口器件,其S参量是
4×4 的矩阵。我们所使用的定向耦合器耦合度为9.95 dB,插损小于0.1 dB,方向隔离度大于40 dB,将其视为理想定向耦合器,则有[S]=[0TC0T00CC00T0CT0] (1) 式中
:C 为定向耦合器的耦合系数;T为定向耦合器的传输系数。射频信号从定向耦合器的端口3经过谐振环到达端口4,相当于经过了一个双端口器件,则有
S43=e−α+jφ (2) 式中:
α 为谐振环的全环损耗;φ 为整个谐振环的相移。当谐振环达到稳态后,存在如下关系[10]
V3S43T+V1C=V3 (3) 则该谐振环的电压增益为
GV=V3V1=C1−S43T (4) 当谐振环的周长为
2πn 时,该谐振环的最大增益为GVm=C1−Te−α (5) GPm=(C1−Te−α)2 (6) 式中
:GVm 为最大电压增益;GPm 为最大功率增益。当端口1和端口2同时输入功率,则在环内形成驻波,波腹位置的电压增益为
G′V=V3+V4V1=2C1−S43T (7) 此时谐振环内部形成驻波场,在驻波场波腹点处,谐振环的增益为
G′Vm=2GVm (8) G′Pm=4GPm (9) 通过改变两个输入信号的相位关系,可以移动波腹位置,重复老炼过程可以使待测设备的所有位置都被驻波场的波腹老炼到。
1.2 测试平台搭建
为了确保谐振环在650 MHz时实现最大增益,在设计测试平台时需要特别关注谐振环的相移。考虑到WR1500波导自重较大,不易安装和拆卸,我们采取了固定谐振环主体的设计方案,在测试中只需要在固定节点处更换待测产品。谐振环主要部件的结构如图2所示。在靠近10 dB定向耦合器的位置我们设置了参考软波导,不同的测试产品除了记录自身的温度变化外,都需要与参考软波导进行对比。同时参考软波导为谐振环提供了±12 mm的长度调节余量,以简化整个环路相位调节过程。
测试平台实物如图3所示。我们使用两个氮化镓(GaN)功放模块分别为谐振环的两个输入端口提供功率,每个功放模块的最大输出功率为
2800 W,这为测试平台提供了足够的功率裕量,能够支持大功率条件下的各种实验[11]。负载与环形器集成在功放模块内部,以防止测试过程中功放模块被烧毁。低电平系统可以输出两路同步信号,通过调节两路信号的相位差达到移动驻波波腹的目的。测试平台搭建完成后,使用矢量网络分析仪对整个系统进行小信号测试。网分的端口1接10 dB定向耦合器的输入,端口2接谐振环上功率监测定向耦合器的端口,该定向耦合器的耦合度为−65.12 dB。测试结果见图4,计算得环内行波功率增益为13.42 dB。
2. 高功率测试
为了确保高功率传输线的长期稳定性和可靠性,我们选择了来自不同制造商的软波导样品进行高功率测试与对比。除了国内制造商,我们还特别引入了来自国外的同类产品作为参照,以国际产品的性能表现来标定和对比国内产品。待测产品分别由铜和铝材料组成。铜因其优良的电导率和导热性,在传输线中被广泛应用,而铝则因其质轻和良好的机械强度成为国外制造商的首选材料。
高功率测试中,每个待测产品都会单独进行测试,待一个产品测试完成后,再更换另一个产品重新测试。测试为两个主要部分,首先是单端口输入功率的行波测试。在这项测试中,只使用一个功放输出功率,另一个功放处于关闭状态,通过上位机设置低电平系统单路输出,并同时记录功放与谐振环上功率监测定耦的读数。当功放输出达到最大时,记录谐振环内的功率。经过30 min的稳定运行后,整个系统的发热趋于稳定,此时记录每个样品和参考软波导的热分析图。该测试旨在评估每个样品在行波条件下的电热性能。
第二部分测试为双端口输入功率的驻波测试。在这一测试中,首先将一个功放的输出功率设置为1.5 kW。待系统稳定后,缓慢增加另一个功放的输出至相同功率,并调整其相位,以使环内驻波波腹移动。同时通过低电平系统监测前向功率和反向功率的相位,通过两路监测信号的相位差来计算波腹的具体位置。当波腹位置位于待测产品中心后,等待30 min记录测试产品和参考软波导的热分析图。这种测试方式旨在评估样品在实际功率应用场景下的性能表现。
高功率测试结果如表1 所示,环境温度均为25 ℃,其中产品4为来自国外制造商的参考软波导。在行波测试中,功放输出功率为2 kW,环内功率为46 kW。在驻波测试中,每个功放的输出均为1.5 kW,环内驻波波腹处等效功率为138 kW。图5为4组产品的驻波测试热分析图。通过测试我们发现,虽然国产的WR1500软波导已经达到了基本可用的水平,能够满足一般应用的需求,但与国外制造商的样品相比,仍存在一定的性能差距。具体来说,在高功率条件下,国产软波导的电热损耗明显高于国外产品。这种较高的电热损耗意味着,在相同的功率传输条件下,国产软波导会消耗更多的能量,转化为不必要的热量,这不仅会降低系统的整体效率,还可能引发热管理问题。造成这种差距的原因可能是多方面的,包括材料选择、制造工艺的精细程度、结构设计的合理性等。国外制造商在软波导设计和制造方面拥有更为成熟的技术和经验,其产品在高功率应用中表现出更好的电热性能和稳定性。为此,我们认为有必要对国产软波导的结构设计进行进一步的优化和改进。
表 1 待测软波导Table 1. Flexible waveguide under testmaterial manufacturing location max. temperature rise (46 kW)/℃ max. temperature rise (138 kW)/℃ copper domestic 9.7 18.5 copper domestic 8.2 17.5 aluminum domestic 6.5 16.8 aluminum foreign 4.8 11.3 3. 软波导优化设计
3.1 结构尺寸选择
软波导结构如图6所示,图中a1、b1、a2、b2分别为软波导内外截面尺寸,r和R分别为软波导内外截面的圆角半径。软波导的表面具有周期性波纹结构,H为波纹深度,T为波纹宽度,S为波纹间距,电磁波在这种结构中会产生一定的反射[12]。软波导的柔韧性是由波纹结构的波纹参数决定的:波纹深度H越大,波峰宽度T和波谷间距S越小,软波导的柔软性越好。为了满足软波导电性能要求,H、T和S必须均小于
λg/10 (λg 为650 MHz的导波波长0.58 m)。波纹结构的尺寸选取决定了软波导是否单模传输、传输带宽内的驻波系数、衰减以及可承受的功率。根据测试经验,本文选择H=9 mm、T=4 mm、S=4 mm。波纹结构虽然使波导柔软,但也造成了略大于对应硬波导的驻波系数。但是由于其H、T和S远小于工作波长,所以其不均匀性很小,由此引起的反射也很小。
为了减小软波导与硬波导连接时的反射以及阻抗匹配的问题,软波导的法兰盘设计要确保与硬波导连接时具备相同的口径,以保证传输线的整体性能[13]。标准WR1500波导的内口径尺寸的长边和短边分别为381 mm和190.5 mm。考虑到生产设备的实际情况,我们优化时选取
a1=379mm ,b1=185mm ,r=13.5mm ,软波导的外口径尺寸a2 和b2 分别为a2=a1+2H=397mm ,b2=b1+2H=203mm ,R=31mm 。矩形软波导内表面的周期性波纹结构会导致纵向电流的传导路径增长,进而增加损耗。优化后的结构与之前的产品相比,纵向电流的传导路径缩短了50%,降低了损耗。3.2 结构尺寸验证及仿真
根据所选择的软波导尺寸结构,软波导的驻波比VSWR理论值可表示为
RVSW=a×(b1+H)b×(a1+H)×√1−(λg2a1)2√1−(λg2a1−1.717×r2b1)2<1.01 (10) 所设计的软波导RVSW<1.01,说明此尺寸设计比较合理。但是由于实际生产过程中的种种因素,实际生产出的软波导的RVSW会高于设计值。
此外矩形软波导的工作频率与其内口径的尺寸有关,波导尺寸的选择应保证其单模传输。矩形软波导中
TEmn 模式的截止波长为λc,mn=2√(ma1)2+(nb1)2 (11) 式中:m代表电磁场沿波导宽边a的驻波最大数;n代表电磁场沿波导窄边b的驻波最大数。矩形波导的基模为
TE10 模式,第一高阶模为TE20 模式,则单模工作条件为λc,20<λ0<λc,10 (12) 通过计算,该软波导的单模工作频率为450 MHz< f <800 MHz,满足WR1500波导的工作频带要求。使用CST软件 [14]对优化后的结构进行了仿真,对应的传输系数如图7所示。在目标频带内,优化后的结构显示出优异的性能。
4. 优化后软波导组件的性能测试
根据以上的结构和尺寸设计,成型了400 mm长的WR1500软波导,制造完成后的软波导实物照片如图8所示。为了对比测试,本文选择了两个不同的制造商,分别使用铜和铝制造样件。在现有的测试平台上进行高功率测试,测试结果如表2所示。由于更换了软波导组件,环内损耗降低,增益增大。单端口输入时功放模块输出2 kW,环内功率50 kW。双端口输入功率时每个功放模块功放输出为1.4 kW,环内驻波波腹等效功率为140 kW。产品2和产品3的热分析图如图9所示。
表 2 待测器件Table 2. Flexible waveguide under testmaterial manufacturing location max. temperature rise (50 kW)/℃ max. temperature rise (140 kW)/℃ copper domestic 10.7 20.2 aluminum domestic 4.3 9.4 aluminum foreign 5.3 10.7 对大尺寸的波纹周期结构来说,由于铜质地较软,很难在加工过程中保持其自身的形状[15]。接缝焊接时,铜需要更高的温度,而由于结构限制,无法通过增加壁厚的方式来提高结构强度。在壁厚0.5 mm的情况下很容易造成焊接后的产品变形,不利于大批量生产。在测试中,测试产品1的内壁具有明显的不均匀变形,这也是结构和功率相同时,产品1反而热损耗更大的原因。而所制造的铝材质WR1500软波导电热性能优于国外制造商。
5. 结 论
本文搭建了一套基于谐振环的高功率测试平台,单端口输入时的功率增益为13.4 dB;双端口输入时,波腹位置的等效功率增益提升至19.4 dB。通过这一测试平台,我们能够在实验室条件下评估软波导在高功率输入下的性能表现。
在高功率测试中,我们发现了现有WR1500软波导设计的一些缺陷。在高功率条件下,现有国产软波导的电热损耗远高于预期。这种损耗主要源于软波导结构设计,这些问题显著影响了传输线的整体性能和可靠性。为了解决这些问题,我们对软波导的结构进行了深入的优化设计。通过调整波导的结构参数以及选择更适合的材料,显著提升了WR1500软波导的电热性能,使其达到了国际标准。
在材料选择方面,我们特别关注了铜和铝的性能表现。测试结果表明,虽然铜的电导率较高,但由于其质地较软和自重较大,在加工过程中容易发生变形。这种变形增大了内壁的不均匀性,从而增大了电磁损耗。相比之下,铝材料尽管电导率略低于铜,但由于其较高的硬度和较轻的重量,能够在加工及长期使用过程中保持形状稳定,从而显著减少了由于变形带来的电磁损耗,在高功率测试中表现出了更优异的稳定性和可靠性。
在后续研究中,我们计划进一步研究应力形变对铜制WR1500软波导的影响,并寻找可能的改进措施。此外,我们还将改进现有的加工工艺,力图在进一步减小电热损耗的基础上,增强软波导的结构强度和耐用性,从而为高功率射频系统的稳定运行提供更为可靠的组件选择。
-
表 1 各厅流量分配
Table 1. Flow distribution by halls
position 42 ℃ water cooling capacity/kW 42 ℃ water flow/(t/h) 25 ℃ water cooling capacity/kW 25 ℃ water flow/(t/h) FEL hall 18 36 50 30 auxiliary hall 2 4 50 30 total 20 40 100 60 表 2 恒温水冷系统主管路设计计算
Table 2. Design and calculation of main pipelines for constant temperature water-cooling system
system
namewater temperature
and control
accuracy/℃dissipation
of heat/
kWwater volume
for given
branch/(m3/h)temperature
rise of given
water/℃designed
flow
rate/(m/s)designed
pipe
diameter/mmpipe
diameter
rounding/mmtube flow
rate/
(m/s)FEL hall 25±0.5 50 30 1.43 2 72.84 80 1.67 auxiliary hall 25±0.5 50 30 1.43 2 59.47 65 1.67 FEL hall 42±0.1 18 36 0.43 2 79.79 100 1.27 auxiliary hall 42±0.1 2 4 0.43 2 26.60 32 1.38 -
[1] Zhao Z T, Wang Dangliang, Chen Jianhui, et al. First lasing of an echo-enabled harmonic generation free-electron laser[J]. Nature Photonics, 2012, 6(6): 360-363. doi: 10.1038/nphoton.2012.105 [2] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7(11): 913-918. doi: 10.1038/nphoton.2013.277 [3] 秦伟伦. X射线自由电子激光的电子束操控方法研究[D]. 北京: 北京大学, 2018: 1-10Qin Weilun. Research on electron beam manipulation methods in X-ray free-electron lasers[D]. Beijing: Peking University, 2018: 1-10 [4] 赵晟. 连续波FEL的注入器束流动力学与束流调制研究[D]. 北京: 北京大学, 2022: 98-108Zhao Sheng. Research on the beam dynamics of photoinjector and beam modulation in continuous-wave FEL[D]. Beijing: Peking University, 2022: 98-108 [5] 曾凌. 高功率谐波型自种子自由电子激光的物理研究[D]. 北京: 北京大学, 2018: 1-10Zeng Ling. Study of high power self-seeded harmonic FEL[D]. Beijing: Peking University, 2018: 1-10 [6] Fang Z, Li J, Qian X X, et al. Design of a 42 T resistive magnet at the CHMFL[J]. IEEE Transactions on Applied Superconductivity, 2024, 34: 4300504. [7] 徐远方. 振荡器自由电子激光输出性能研究[D]. 合肥: 中国科学技术大学, 2020: 30-40Xu Yuanfang. The study of laser performance in oscillator free electron laser[D]. Hefei: University of Science and Technology of China, 2020: 30-40 [8] Zen Huishun, Suphakul S, Kii T, et al. Present status and perspectives of long wavelength free electron lasers at Kyoto University[J]. Physics Procedia, 2016, 84: 47-53. doi: 10.1016/j.phpro.2016.11.009 [9] Ortega J M, Rieul B, Berthet J P, et al. Electron beam adaptation measurement of an infrared FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 707: 69-72. [10] Li Heting, Jia Qika, Zhang Shancai, et al. Design of FELiChEM, the first infrared free-electron laser user facility in China[J]. Chinese Physics C, 2017, 41: 018102. doi: 10.1088/1674-1137/41/1/018102 [11] 刘金琨. 先进PID控制MATLAB仿真[M]. 北京: 电子工业出版社, 2016Liu Jinkun. Advanced PID control MATLAB simulation[M]. Beijing: Publishing House of Electronics Industry, 2016 [12] EPICS Introduction[EB/OL]. https://epics.anl.gov/index.php. [13] EPICS Users[EB/OL]. https://en.wikipedia.org/wiki/EPICS. [14] EPICS. IOC software components[EB/OL]. https://docs.epics-controls.org/en/latest/guides/EPICS_Intro.html. [15] SNS Controls CS-Studio[EB/OL]. https://controlssoftware.sns.ornl.gov/css_phoebus/. -