[1] |
丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
|
[2] |
Banaschik R, Lukes P, Jablonowski H, et al. Potential of pulsed corona discharges generated in water for the degradation of persistent pharmaceutical residues[J]. Water Research, 2015, 84: 127-135. doi: 10.1016/j.watres.2015.07.018
|
[3] |
罗义, 刘明远, 王承暄, 等. 脉冲调制射频空气等离子体固氮研究[J]. 武汉大学学报(工学版), 2023, 56(11):1405-1412Luo Yi, Liu Mingyuan, Wang Chengxuan, et al. Nitrogen fixation by pulse modulated radio frequency air plasma[J]. Engineering Journal of Wuhan University, 2023, 56(11): 1405-1412
|
[4] |
Liu Yang, Kolbakir C, Hu Haiyang, et al. A comparison study on the thermal effects in DBD plasma actuation and electrical heating for aircraft icing mitigation[J]. International Journal of Heat and Mass Transfer, 2018, 124: 319-330. doi: 10.1016/j.ijheatmasstransfer.2018.03.076
|
[5] |
陈铄, 杜怡君, 全晓曦, 等. 低温等离子体刻蚀和接枝对芳纶纤维/环氧复合材料力学性能的影响[J]. 绝缘材料, 2023, 56(12):69-77Chen Shuo, Du Yijun, Quan Xiaoxi, et al. Effect of low temperature plasma etching and grafting on mechanical properties of aramid/epoxy composites[J]. Insulating Materials, 2023, 56(12): 69-77
|
[6] |
乔乾森, 巴德玛, 李长青, 等. 低温等离子体表面处理技术研究[J]. 材料保护, 2022, 55(12):55-60Qiao Qiansen, Ba Dema, Li Changqing, et al. Research on low-temperature plasma surface treatment technology[J]. Materials Protection, 2022, 55(12): 55-60
|
[7] |
陈新华, 孙军辉, 殷胜勇, 等. 脉冲电场与生物医药技术的交叉及其对肿瘤治疗模式的改变[J]. 高电压技术, 2014, 40(12):3746-3754Chen Xinhua, Sun Junhui, Yin Shengyong, et al. Interaction of pulsed electric field and biomedicine technology and the influence on solid tumor therapy[J]. High Voltage Engineering, 2014, 40(12): 3746-3754
|
[8] |
郭雨怡, 石富坤, 王群, 等. 高压纳秒脉冲电场的细胞器生物电效应综述[J]. 物理学报, 2022, 71:068701 doi: 10.7498/aps.71.20211850Guo Yuyi, Shi Fukun, Wang Qun, et al. A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields[J]. Acta Physica Sinica, 2022, 71: 068701 doi: 10.7498/aps.71.20211850
|
[9] |
李春霞. 一体化D-dot探头在传输线电压测量中的设计和应用[J]. 强激光与粒子束, 2018, 30:095004 doi: 10.11884/HPLPB201830.180141Li Chunxia. Design and performance of integrative D-dot monitor for transmission line voltage measurement[J]. High Power Laser and Particle Beams, 2018, 30: 095004 doi: 10.11884/HPLPB201830.180141
|
[10] |
姜晓峰, 丛培天, 周文渊, 等. 用于FLTD的陶瓷封装多间隙气体开关[J]. 强激光与粒子束, 2020, 32:035007 doi: 10.11884/HPLPB202032.190383Jiang Xiaofeng, Cong Peitian, Zhou Wenyuan, et al. Ceramic packaged multi-gap gas switch for fast linear transformer driver[J]. High Power Laser and Particle Beams, 2020, 32: 035007 doi: 10.11884/HPLPB202032.190383
|
[11] |
赵鑫, 张乔根, 白雁力, 等. MOSFET在感应叠加型高压双方波脉冲发生装置中的应用[J]. 高电压技术, 2015, 41(12):4066-4072Zhao Xin, Zhang Qiaogen, Bai Yanli, et al. Application of MOSFET in high voltage double square-wave pulses generator with inductive adder configuration[J]. High Voltage Engineering, 2015, 41(12): 4066-4072
|
[12] |
江伟华. 基于半导体开关的高重频LTD[J]. 高电压技术, 2015, 41(6):1776-1780Jiang Weihua. High-frequency repetitive LTD based on semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1776-1780
|
[13] |
郭帆, 贾伟, 谢霖燊, 等. 基于半导体开关和LTD技术的高重频快沿高压脉冲源[J]. 强激光与粒子束, 2016, 28:055002 doi: 10.11884/HPLPB201628.055002Guo Fan, Jia Wei, Xie Linshen, et al. High power high repetitive frequency generator based on MOSFET and LTD technology[J]. High Power Laser and Particle Beams, 2016, 28: 055002 doi: 10.11884/HPLPB201628.055002
|
[14] |
王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
|
[15] |
刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
|
[16] |
Elgenedy M A, Darwish A, Ahmed S, et al. A transition arm modular multilevel universal pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 8979-8991. doi: 10.1109/TPEL.2017.2653243
|
[17] |
Sakamoto T, Akiyama H. Solid-state dual Marx generator with a short pulsewidth[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2649-2653. doi: 10.1109/TPS.2013.2272946
|
[18] |
Li Zi, Liu Haotian, Rao Junfeng, et al. Gate driving circuit for the all solid-state rectangular Marx generator[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4058-4063. doi: 10.1109/TPS.2019.2923327
|
[19] |
Rao Junfeng, Zhu Yicheng, Wang Yonggang, et al. Study on the basic characteristics of solid-state linear transformer drivers[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3168-3175. doi: 10.1109/TPS.2020.3013292
|
[20] |
Jiang Weihua, Sugiyama H, Tokuchi A. Pulsed power generation by solid-state LTD[J]. IEEE Transactions on Plasma Science, 2014, 42(11): 3603-3608. doi: 10.1109/TPS.2014.2358627
|
[21] |
饶俊峰, 吴施蓉, 朱益成, 等. 双极性固态直线变压器驱动器的研制[J]. 强激光与粒子束, 2021, 33:065006 doi: 10.11884/HPLPB202133.200323Rao Junfeng, Wu Shirong, Zhu Yicheng, et al. Development of bipolar solid-state linear transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065006 doi: 10.11884/HPLPB202133.200323
|
[22] |
唐潇, 孙文杰, 何明祖, 等. 双极性直线型变压器驱动源的研制[J]. 强激光与粒子束, 2021, 33:065004 doi: 10.11884/HPLPB202133.210078Tang Xiao, Sun Wenjie, He Mingzu, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33: 065004 doi: 10.11884/HPLPB202133.210078
|
[23] |
Feng Yu, Sugai T, Jiang Weihua. Solid-state bipolar linear transformer driver using inductive energy storage[J]. IEEE Transactions on Plasma Science, 2021, 49(9): 2887-2892. doi: 10.1109/TPS.2021.3103743
|
[24] |
王昌金, 姚陈果, 董守龙, 等. 基于Marx和LTD拓扑的全固态复合模式脉冲源的研制[J]. 电工技术学报, 2018, 33(13):3089-3097Wang Changjin, Yao Chenguo, Dong Shoulong, et al. The development of all solid-state mixed pulse generator based on Marx and LTD topologies[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3089-3097
|
[25] |
江伟华. 高重复频率脉冲功率技术及其应用: (7)主要技术问题和未来发展趋势[J]. 强激光与粒子束, 2015, 27:010201 doi: 10.11884/HPLPB201527.010201Jiang Weihua. Repetition rate pulsed power technology and its applications: (vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27: 010201 doi: 10.11884/HPLPB201527.010201
|
[26] |
江伟华. 高重复频率脉冲功率技术及其应用: (5)脉冲叠加的意义[J]. 强激光与粒子束, 2013, 25(8):1877-1882 doi: 10.3788/HPLPB20132508.1877Jiang Weihua. Repetition rate pulsed power technology and its applications: (V) the implication of pulse adding[J]. High Power Laser and Particle Beams, 2013, 25(8): 1877-1882 doi: 10.3788/HPLPB20132508.1877
|
[27] |
Rao Junfeng, Zhang Rui, Shi Fukun, et al. A high-voltage solid-state Marx generator with adjustable pulse edges[J]. High Voltage, 2023, 8(5): 878-888. doi: 10.1049/hve2.12311
|
[28] |
张睿, 饶俊峰, 李孜, 等. 一种调节Marx电源脉冲边沿的驱动电路[J]. 强激光与粒子束, 2022, 34:095011 doi: 10.11884/HPLPB202234.210011Zhang Rui, Rao Junfeng, Li Zi, et al. A driver circuit to adjust the pulse edges of Marx generators[J]. High Power Laser and Particle Beams, 2022, 34: 095011 doi: 10.11884/HPLPB202234.210011
|
[29] |
岳亚琪, 董守龙, 马欣, 等. 协同脉冲增强不可逆电穿孔消融疗效的多参数效应分析及活体大动物实验研究[J]. 高电压技术, 2023, 49(12):5246-5259Yue Yaqi, Dong Shoulong, Ma Xin, et al. Multi-parameter effect analysis and large living animal experimental study of synergistic pulse-enhanced irreversible electroporation ablation[J]. High Voltage Engineering, 2023, 49(12): 5246-5259
|