Development of 10 kV nanosecond pulse power supply with fast leading edge
-
摘要: 随着SiC MOSFET器件快速开关特性的发展,其在需要高速、灵活高压脉冲输出的电路系统中得到广泛应用。研究表明,SiC MOSFET的导通时间主要受栅极驱动技术及其实现方式的影响,因此相关研究多聚焦于其栅极驱动方法优化。该研究通过对SiC MOSFET栅极驱动回路进行参数测试与优化设计,并将其应用于超快导通型SiC MOSFET器件,以实现导通时间的显著缩减。为验证优化效果,研究团队设计并制备了栅极升压驱动器的优化原型进行实验测试。测试数据表明,经过优化的栅极驱动电压调节方法有效提升了器件性能,在10 kV电压等级与50 A电流条件下,脉冲电压上升沿时间可达27 ns。
-
关键词:
- 固态开关串联 /
- 驱动回路参数优化 /
- 快前沿 /
- SiC MOSFET
Abstract: With the development of fast switching characteristics of SiC MOSFET devices, they are widely used in circuit systems that require high-speed and flexible high-voltage pulse output. Studies have shown that the on-time of SiC MOSFETs is mainly affected by the gate drive technology and its implementation. Accordingly, related studies have mostly focused on the optimization of its gate drive method. In this study, a SiC MOSFET gate drive circuit was parametrically tested and optimized, and applied to ultra-fast conduction SiC MOSFET devices to achieve a significant reduction in on-time. To verify the optimization effect, the research team designed and prepared an optimized prototype of the gate boost driver for experimental testing. The test data show that the optimized gate drive voltage regulation method effectively improves the device performance, with a pulse voltage rising edge time of up to 27 ns under 10 kV voltage level and 50 A current conditions. -
表 1 两款芯片性能对比
Table 1. Comparison of the performance of the two chips
chip
typedrive
channeldrive
current/Arise
time/nsdrive
voltage/V2EDF9275 2 4 6.5 20 IXDN614 1 14 25.0 4.5~35 表 2 三款磁环型号
Table 2. Three magnetic ring models
core model core material core model core size Ⅰ nanocrystal CMC020012008H 20 mm×12 mm×8 mm Ⅱ nanocrystal CMC030020010H 30 mm×20 mm×10 mm Ⅲ manganese-zinc
ferriteB64290L0632X035 20 mm×12 mm×8 mm 表 3 实验对照组信息
Table 3. Control group information
experiment number core model ratio 1 Ⅰ 1∶1 2 Ⅰ 1∶2 3 Ⅰ 4∶4 4 Ⅰ 6∶6 5 Ⅱ 1∶1 9 Ⅲ 1∶1 表 4 不同脉冲电源的性能比较
Table 4. Performance comparison of different pulse power supplies
-
[1] 孙瑞泽, 陈万军, 刘超, 等. 压控型脉冲功率半导体器件技术及应用[J]. 强激光与粒子束, 2024, 36:095001 doi: 10.11884/HPLPB202436.240120Sun Ruize, Chen Wanjun, Liu Chao, et al. Technology and application of the voltage-controlled pulse power semiconductor devices[J]. High Power Laser and Particle Beams, 2024, 36: 095001 doi: 10.11884/HPLPB202436.240120 [2] 郭登耀, 汤晓燕, 宋庆文, 等. 基于碳化硅等离子体器件的功率脉冲锐化技术[J]. 强激光与粒子束, 2024, 36:013008 doi: 10.11884/HPLPB202436.230209Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Power pulse sharpening technology based on silicon carbide plasma devices[J]. High Power Laser and Particle Beams, 2024, 36: 013008 doi: 10.11884/HPLPB202436.230209 [3] Redondo L M, Kandratsyeu A, Barnes M J. Marx generator prototype for kicker magnets based on SiC MOSFETs[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3334-3339. doi: 10.1109/TPS.2018.2808194 [4] 包涵春, 关银霞, 王世强, 等. 脉冲驱动等离子体射流中活性粒子空间分布规律[J]. 强激光与粒子束, 2024, 36:055023 doi: 10.11884/HPLPB202436.230422Bao Hanchun, Guan Yinxia, Wang Shiqiang, et al. Spatial distribution of active particles in pulsed driven plasma jet[J]. High Power Laser and Particle Beams, 2024, 36: 055023 doi: 10.11884/HPLPB202436.230422 [5] Jo H B, Song S H, Lee S H, et al. MOSFET gate driver circuit design for high repetitive (200 kHz) high voltage (10 kV) solid-state pulsed-power modulator[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10461-10469. doi: 10.1109/TPEL.2021.3062612 [6] 范红艳, 潘亚峰, 王俊杰, 等. 同轴脉冲形成线振动环境适应性优化设计[J]. 强激光与粒子束, 2024, 36:013012 doi: 10.11884/HPLPB202436.230223Fan Hongyan, Pan Yafeng, Wang Junjie, et al. Optimization design for vibration environmental adaptability of coaxial pulse forming line[J]. High Power Laser and Particle Beams, 2024, 36: 013012 doi: 10.11884/HPLPB202436.230223 [7] 谌怡, 黄子平, 张篁, 等. 氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055009 doi: 10.11884/HPLPB202436.230420Shen Yi, Huang Ziping, Zhang Huang, et al. kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055009 doi: 10.11884/HPLPB202436.230420 [8] Driessen A B J M, Beckers F J C M, Huiskamp T, et al. Design and implementation of a compact 20-kHz nanosecond magnetic pulse compression generator[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3288-3299. doi: 10.1109/TPS.2017.2771275 [9] Driessen A B J M, van Heesch E J M, Huiskamp T, et al. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3083-3088. doi: 10.1109/TPS.2014.2314686 [10] 姚皓伟, 李孜, 王永刚, 等. 一种紧凑型固态Marx发生器的研究[J]. 强激光与粒子束, 2024, 36:025006 doi: 10.11884/HPLPB202436.230148Yao Haowei, Li Zi, Wang Yonggang, et al. Investigation of a compact solid-state Marx generator[J]. High Power Laser and Particle Beams, 2024, 36: 025006 doi: 10.11884/HPLPB202436.230148 [11] 李东升, 李孜, 王永刚, 等. 具有快前沿的固态Marx电源的研究[J]. 强激光与粒子束, 2024, 36:025003 doi: 10.11884/HPLPB202436.230197Li Dongsheng, Li Zi, Wang Yonggang, et al. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36: 025003 doi: 10.11884/HPLPB202436.230197 [12] 丁明军, 李玺钦, 冯宗明, 等. 200kV全固态Marx结构方波脉冲电源设计[J]. 强激光与粒子束, 2017, 29:025009 doi: 10.11884/HPLPB201729.160453Ding Mingjun, Li Xiqin, Feng Zongming, et al. Design of 200 kV solid-state square-wave pulse power supply based on Marx topology[J]. High Power Laser and Particle Beams, 2017, 29: 025009 doi: 10.11884/HPLPB201729.160453 [13] 石毅青. 基于氮化镓器件的高压固态开关研究[D]. 西安: 西安电子科技大学, 2022Shi Yiqing. Research on high voltage solid-state switch based on GaN devices[D]. Xi'an: Xidian University, 2022 [14] Bae J S, Kim T H, Son S H, et al. Compact solid-state Marx modulator with fast switching for nanosecond pulse[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9406-9414. doi: 10.1109/TPEL.2022.3156586 [15] 叶明天, 张迎鹏, 龙天骏, 等. 基于脉冲变压器的快前沿固态触发器[J]. 强激光与粒子束, 2024, 36:025004 doi: 10.11884/HPLPB202436.230287Ye Mingtian, Zhang Yingpeng, Long Tianjun, et al. Fast-rise-time solid-state trigger pulse generator based on pulse transformer[J]. High Power Laser and Particle Beams, 2024, 36: 025004 doi: 10.11884/HPLPB202436.230287 [16] 于海跃. 高压固态开关关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017Yu Haiyue. The research on the key technology of high-voltage solid switch[D]. Harbin: Harbin Institute of Technology, 2017 [17] 王东. 考虑磁驱动非线性及分散性的Marx脉冲电源建模[D]. 武汉: 海军工程大学, 2024Wang Dong. Modeling of Marx pulsed power supply considering magnetic drive nonlinearity and dispersion[D]. Wuhan: Naval University of Engineering, 2024 [18] 曾正, 李晓玲, 曹琳, 等. 开尔文连接对功率模块并联均流影响的对比评估[J]. 中国电机工程学报, 2019, 39(18):5480-5489Zeng Zheng, Li Xiaoling, Cao Lin, et al. Evaluation on current sharing of power module affected by Kelvin connection[J]. Proceedings of the CSEE, 2019, 39(18): 5480-5489 [19] 王浩南, 曹玉峰, 赖耀康, 等. 基于裸片封装的SiC MOSFET功率模块热分析[J]. 电器与能效管理技术, 2022(8):39-43Wang Haonan, Cao Yufeng, Lai Yaokang, et al. Thermal analysis of SiC MOSFET power module based on die package[J]. Electrical & Energy Management Technology, 2022(8): 39-43 [20] 贺大钊. 基于SiC MOSFET串联型57 kV高压开关组件关键技术研究[D]. 重庆:重庆大学, 2023He Dazhao. Research on key technologies of 57 kV high voltage switch module based on SiC MOSFET series [D]. Chongqing:Chongqing University, 2023 [21] 饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002 doi: 10.11884/HPLPB202133.210332Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 doi: 10.11884/HPLPB202133.210332 [22] 张政江. 宽禁带半导体高速磁隔离驱动技术研究[D]. 合肥:合肥工业大学, 2021Zhang Zhengjiang. Research on high speed magnetic isolation drive technology of wide-band gap semiconductor[D]. Hefei: Hefei University of Technology, 2021 [23] Azizi M, van Oorschot J J, Huiskamp T. Ultrafast switching of SiC MOSFETs for high-voltage pulsed-power circuits[J]. IEEE Transactions on Plasma Science, 2020, 48(12): 4262-4272. doi: 10.1109/TPS.2020.3039372 [24] Li Xin, Luo Yifei, Wang Ruitian, et al. A passive voltage-balancing method for series-connected SiC MOSFETs in pulse generator based on snubber circuit[J]. IEEE Transactions on Industrial Electronics, 2024, 71(7): 7030-7041. doi: 10.1109/TIE.2023.3299024 [25] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806 -