留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有快前沿的10 kV纳秒级脉冲电源的研制

王亿明 王凌云 张东东 周媛 王志强 刘征 孔佑军

谢长玲, 孙虹, 李晓. 基于Labview的快循环扫频信号相位差测量算法实现[J]. 强激光与粒子束, 2015, 27: 065104. doi: 10.11884/HPLPB201527.065104
引用本文: 王亿明, 王凌云, 张东东, 等. 具有快前沿的10 kV纳秒级脉冲电源的研制[J]. 强激光与粒子束, 2025, 37: 035001. doi: 10.11884/HPLPB202537.240406
Xie Changling, Sun Hong, Li Xiao. Phase difference measurement of sweep signal with rapid cycling mode based on Labview[J]. High Power Laser and Particle Beams, 2015, 27: 065104. doi: 10.11884/HPLPB201527.065104
Citation: Wang Yiming, Wang Lingyun, Zhang Dongdong, et al. Development of 10 kV nanosecond pulse power supply with fast leading edge[J]. High Power Laser and Particle Beams, 2025, 37: 035001. doi: 10.11884/HPLPB202537.240406

具有快前沿的10 kV纳秒级脉冲电源的研制

doi: 10.11884/HPLPB202537.240406
基金项目: 国家自然科学基金项目(92166106)
详细信息
    作者简介:

    王亿明,15724592197@163.com

    通讯作者:

    张东东,zhdd80@dlut.edu.cn

  • 中图分类号: TN78;TN386.1

Development of 10 kV nanosecond pulse power supply with fast leading edge

  • 摘要: 随着SiC MOSFET器件快速开关特性的发展,其在需要高速、灵活高压脉冲输出的电路系统中得到广泛应用。研究表明,SiC MOSFET的导通时间主要受栅极驱动技术及其实现方式的影响,因此相关研究多聚焦于其栅极驱动方法优化。该研究通过对SiC MOSFET栅极驱动回路进行参数测试与优化设计,并将其应用于超快导通型SiC MOSFET器件,以实现导通时间的显著缩减。为验证优化效果,研究团队设计并制备了栅极升压驱动器的优化原型进行实验测试。测试数据表明,经过优化的栅极驱动电压调节方法有效提升了器件性能,在10 kV电压等级与50 A电流条件下,脉冲电压上升沿时间可达27 ns。
  • 图  1  开关串联电路脉冲前沿影响因素

    Figure  1.  Influencing factors of pulse front

    图  2  高压快前沿脉冲总体方案

    Figure  2.  High voltage fast front pulse overall scheme

    图  3  功率放大电路

    Figure  3.  Power amplifier circuit

    图  4  三极管加速开关电路

    Figure  4.  Triode acceleration switching circuit

    图  5  自举电容与隔离电源式驱动对比

    Figure  5.  Bootstrap capacitor versus isolated power drive

    图  6  同一个磁芯不同匝比的驱动波形图

    Figure  6.  Driving waveform diagram of the same magnetic core with different turns

    图  7  不同款磁芯在相同匝比时的驱动波形

    Figure  7.  Driving waveform of different magnetic cores at the same turn ratio

    图  8  自维持电路状态

    Figure  8.  Self-sustaining circuit status

    图  9  自维持电路输出波形

    Figure  9.  Self-sustaining circuit output waveform

    图  10  负载侧被动均压缓冲电路

    Figure  10.  Passive equalizing buffer circuit on load side

    图  11  三种状况下两开关漏源电压

    Figure  11.  Drain-source voltage of two switches under three conditions

    图  12  三种情况下负载脉冲电压波形

    Figure  12.  Load pulse voltage waveform in three cases

    图  13  开关串联SiC MOSFET测试电路实验平台

    Figure  13.  Switch series SiC MOSFET test circuit experimental platform

    图  14  栅源信号同步性测试

    Figure  14.  Gate-source signal synchronization test

    图  15  动态电压测试

    Figure  15.  Dynamic voltage test

    图  16  高重频实验和脉宽变换实验

    Figure  16.  High repetition frequency experiment and pulse width transformation experiment

    图  17  高压脉冲发生器测试电路

    Figure  17.  High voltage pulse generator test circuit

    图  18  高压脉冲发生器测试结果

    Figure  18.  High voltage pulse generator test results

    图  19  10 kV下不同驱动电压的负载脉冲电压波形

    Figure  19.  Load pulse voltage waveform of different driving voltages at 10 kV level

    表  1  两款芯片性能对比

    Table  1.   Comparison of the performance of the two chips

    chip
    type
    drive
    channel
    drive
    current/A
    rise
    time/ns
    drive
    voltage/V
    2EDF9275 2 4 6.5 20
    IXDN614 1 14 25.0 4.5~35
    下载: 导出CSV

    表  2  三款磁环型号

    Table  2.   Three magnetic ring models

    core model core material core model core size
    nanocrystal CMC020012008H 20 mm×12 mm×8 mm
    nanocrystal CMC030020010H 30 mm×20 mm×10 mm
    manganese-zinc
    ferrite
    B64290L0632X035 20 mm×12 mm×8 mm
    下载: 导出CSV

    表  3  实验对照组信息

    Table  3.   Control group information

    experiment number core model ratio
    1 1∶1
    2 1∶2
    3 4∶4
    4 6∶6
    5 1∶1
    9 1∶1
    下载: 导出CSV

    表  4  不同脉冲电源的性能比较

    Table  4.   Performance comparison of different pulse power supplies

    type reference voltage level/kV load current/A rise time/ns
    solid-state switch series Shi et al[13] 2 40 40
    Marx generator Wang et al[17] 2 20 20
    solid-state switch series Li et al[24] 5 17 45.8
    Marx generator Wang et al[25] 10 25 100
    this text 10 50 27
    下载: 导出CSV
  • [1] 孙瑞泽, 陈万军, 刘超, 等. 压控型脉冲功率半导体器件技术及应用[J]. 强激光与粒子束, 2024, 36:095001 doi: 10.11884/HPLPB202436.240120

    Sun Ruize, Chen Wanjun, Liu Chao, et al. Technology and application of the voltage-controlled pulse power semiconductor devices[J]. High Power Laser and Particle Beams, 2024, 36: 095001 doi: 10.11884/HPLPB202436.240120
    [2] 郭登耀, 汤晓燕, 宋庆文, 等. 基于碳化硅等离子体器件的功率脉冲锐化技术[J]. 强激光与粒子束, 2024, 36:013008 doi: 10.11884/HPLPB202436.230209

    Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Power pulse sharpening technology based on silicon carbide plasma devices[J]. High Power Laser and Particle Beams, 2024, 36: 013008 doi: 10.11884/HPLPB202436.230209
    [3] Redondo L M, Kandratsyeu A, Barnes M J. Marx generator prototype for kicker magnets based on SiC MOSFETs[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3334-3339. doi: 10.1109/TPS.2018.2808194
    [4] 包涵春, 关银霞, 王世强, 等. 脉冲驱动等离子体射流中活性粒子空间分布规律[J]. 强激光与粒子束, 2024, 36:055023 doi: 10.11884/HPLPB202436.230422

    Bao Hanchun, Guan Yinxia, Wang Shiqiang, et al. Spatial distribution of active particles in pulsed driven plasma jet[J]. High Power Laser and Particle Beams, 2024, 36: 055023 doi: 10.11884/HPLPB202436.230422
    [5] Jo H B, Song S H, Lee S H, et al. MOSFET gate driver circuit design for high repetitive (200 kHz) high voltage (10 kV) solid-state pulsed-power modulator[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10461-10469. doi: 10.1109/TPEL.2021.3062612
    [6] 范红艳, 潘亚峰, 王俊杰, 等. 同轴脉冲形成线振动环境适应性优化设计[J]. 强激光与粒子束, 2024, 36:013012 doi: 10.11884/HPLPB202436.230223

    Fan Hongyan, Pan Yafeng, Wang Junjie, et al. Optimization design for vibration environmental adaptability of coaxial pulse forming line[J]. High Power Laser and Particle Beams, 2024, 36: 013012 doi: 10.11884/HPLPB202436.230223
    [7] 谌怡, 黄子平, 张篁, 等. 氢闸流管驱动三同轴电缆Blumlein线的kHz重频脉冲功率源[J]. 强激光与粒子束, 2024, 36:055009 doi: 10.11884/HPLPB202436.230420

    Shen Yi, Huang Ziping, Zhang Huang, et al. kHz repetition rate pulse power source based on tri-coaxial cable Blumlein lines driven by hydrogen thyratron[J]. High Power Laser and Particle Beams, 2024, 36: 055009 doi: 10.11884/HPLPB202436.230420
    [8] Driessen A B J M, Beckers F J C M, Huiskamp T, et al. Design and implementation of a compact 20-kHz nanosecond magnetic pulse compression generator[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3288-3299. doi: 10.1109/TPS.2017.2771275
    [9] Driessen A B J M, van Heesch E J M, Huiskamp T, et al. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3083-3088. doi: 10.1109/TPS.2014.2314686
    [10] 姚皓伟, 李孜, 王永刚, 等. 一种紧凑型固态Marx发生器的研究[J]. 强激光与粒子束, 2024, 36:025006 doi: 10.11884/HPLPB202436.230148

    Yao Haowei, Li Zi, Wang Yonggang, et al. Investigation of a compact solid-state Marx generator[J]. High Power Laser and Particle Beams, 2024, 36: 025006 doi: 10.11884/HPLPB202436.230148
    [11] 李东升, 李孜, 王永刚, 等. 具有快前沿的固态Marx电源的研究[J]. 强激光与粒子束, 2024, 36:025003 doi: 10.11884/HPLPB202436.230197

    Li Dongsheng, Li Zi, Wang Yonggang, et al. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36: 025003 doi: 10.11884/HPLPB202436.230197
    [12] 丁明军, 李玺钦, 冯宗明, 等. 200kV全固态Marx结构方波脉冲电源设计[J]. 强激光与粒子束, 2017, 29:025009 doi: 10.11884/HPLPB201729.160453

    Ding Mingjun, Li Xiqin, Feng Zongming, et al. Design of 200 kV solid-state square-wave pulse power supply based on Marx topology[J]. High Power Laser and Particle Beams, 2017, 29: 025009 doi: 10.11884/HPLPB201729.160453
    [13] 石毅青. 基于氮化镓器件的高压固态开关研究[D]. 西安: 西安电子科技大学, 2022

    Shi Yiqing. Research on high voltage solid-state switch based on GaN devices[D]. Xi'an: Xidian University, 2022
    [14] Bae J S, Kim T H, Son S H, et al. Compact solid-state Marx modulator with fast switching for nanosecond pulse[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9406-9414. doi: 10.1109/TPEL.2022.3156586
    [15] 叶明天, 张迎鹏, 龙天骏, 等. 基于脉冲变压器的快前沿固态触发器[J]. 强激光与粒子束, 2024, 36:025004 doi: 10.11884/HPLPB202436.230287

    Ye Mingtian, Zhang Yingpeng, Long Tianjun, et al. Fast-rise-time solid-state trigger pulse generator based on pulse transformer[J]. High Power Laser and Particle Beams, 2024, 36: 025004 doi: 10.11884/HPLPB202436.230287
    [16] 于海跃. 高压固态开关关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017

    Yu Haiyue. The research on the key technology of high-voltage solid switch[D]. Harbin: Harbin Institute of Technology, 2017
    [17] 王东. 考虑磁驱动非线性及分散性的Marx脉冲电源建模[D]. 武汉: 海军工程大学, 2024

    Wang Dong. Modeling of Marx pulsed power supply considering magnetic drive nonlinearity and dispersion[D]. Wuhan: Naval University of Engineering, 2024
    [18] 曾正, 李晓玲, 曹琳, 等. 开尔文连接对功率模块并联均流影响的对比评估[J]. 中国电机工程学报, 2019, 39(18):5480-5489

    Zeng Zheng, Li Xiaoling, Cao Lin, et al. Evaluation on current sharing of power module affected by Kelvin connection[J]. Proceedings of the CSEE, 2019, 39(18): 5480-5489
    [19] 王浩南, 曹玉峰, 赖耀康, 等. 基于裸片封装的SiC MOSFET功率模块热分析[J]. 电器与能效管理技术, 2022(8):39-43

    Wang Haonan, Cao Yufeng, Lai Yaokang, et al. Thermal analysis of SiC MOSFET power module based on die package[J]. Electrical & Energy Management Technology, 2022(8): 39-43
    [20] 贺大钊. 基于SiC MOSFET串联型57 kV高压开关组件关键技术研究[D]. 重庆:重庆大学, 2023

    He Dazhao. Research on key technologies of 57 kV high voltage switch module based on SiC MOSFET series [D]. Chongqing:Chongqing University, 2023
    [21] 饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002 doi: 10.11884/HPLPB202133.210332

    Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 doi: 10.11884/HPLPB202133.210332
    [22] 张政江. 宽禁带半导体高速磁隔离驱动技术研究[D]. 合肥:合肥工业大学, 2021

    Zhang Zhengjiang. Research on high speed magnetic isolation drive technology of wide-band gap semiconductor[D]. Hefei: Hefei University of Technology, 2021
    [23] Azizi M, van Oorschot J J, Huiskamp T. Ultrafast switching of SiC MOSFETs for high-voltage pulsed-power circuits[J]. IEEE Transactions on Plasma Science, 2020, 48(12): 4262-4272. doi: 10.1109/TPS.2020.3039372
    [24] Li Xin, Luo Yifei, Wang Ruitian, et al. A passive voltage-balancing method for series-connected SiC MOSFETs in pulse generator based on snubber circuit[J]. IEEE Transactions on Industrial Electronics, 2024, 71(7): 7030-7041. doi: 10.1109/TIE.2023.3299024
    [25] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4):799-806

    Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al. A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  73
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-27
  • 修回日期:  2025-02-11
  • 录用日期:  2025-02-11
  • 网络出版日期:  2025-03-01
  • 刊出日期:  2025-03-15

目录

    /

    返回文章
    返回