留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光无线能量传输技术研究进展

郭林辉 钟李鑫 蓝建宇 李涛 蒋全伟 谢鹏飞 谭昊 孙堂友 高松信 唐淳

卢柯润, 刘福印, 王日品, 等. 本征光背入射的平面碳化硅光导开关响应特性[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.240412
引用本文: 郭林辉, 钟李鑫, 蓝建宇, 等. 激光无线能量传输技术研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202537.250004
Lu Kerun, Liu Fuyin, Wang Ripin, et al. Response characteristics of intrinsic back-illuminated lateral silicon carbide photoconductive switches[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.240412
Citation: Guo Linhui, Zhong Lixin, Lan Jianyu, et al. Research progress of laser wireless power transmission technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250004

激光无线能量传输技术研究进展

doi: 10.11884/HPLPB202537.250004
基金项目: 基础加强项目(2020-JCJQ-ZD-245-20-2);中物院基金项目(2023-JMRH-LG)
详细信息
    作者简介:

    郭林辉glh863@163.com

    通讯作者:

    谭 昊,tanhaomf@163.com

    孙堂友suntangyou@guet.edu.cn

  • 中图分类号: TN365

Research progress of laser wireless power transmission technology

  • 摘要: 激光无线能量传输技术具有高功率、远距离、非接触式、能信同传等优点,有望成为一种革新性的能源传递方式,在消费电子产品、无人机、航天等领域展现巨大的应用潜力。分析了激光无线能量传输系统的核心模块以及在地面、航天、水下等领域的国内外发展现状,总结了其面临的技术挑战。最后,讨论了激光无线能量传输系统的未来发展趋势。
  • 光导开关是一种具有快速响应时间(~ps)、低时间抖动(~ps)和高重复频率(MHz)的固态器件,可用于微波和毫米波发生器、高电压控制与传输以及大功率电力电子设备,具有广阔的应用前景[1-4]。相较于其他半导体材料,碳化硅(SiC)作为第三代宽禁带半导体,生产与工艺技术更加成熟,且具有高击穿场强、高饱和电子迁移率、高热导率等优秀特性[5-6]。碳化硅光导开关的重要应用场景之一是用于产生线性可调制微波[7-8],2024年,国防科技大学曾玲珑采用堆叠型正对型SiC光导开关实现了0.5~1.8 GHz连续可调谐输出微波的结果,输出微波幅值可达102 kW,研究表明极间电容是限制主频上限的主要因素[9]。平面型器件由于具有低极间电容,因此该构型理论上可实现更高频率的微波输出,2022年,国防科技大学楚旭博士使用平面4H-SiC光导开关实现了0.5~10 GHz主频连续可调谐,验证了平面器件的主频上限高的特点[10]。在作为触发开关的研究领域,2005年,弗吉尼亚联邦大学的K.Zhu等人研究了高掺杂GaN外延层对碳化硅光导开关寿命的影响[11]。2015年,德克萨斯理工大学D. Mauch等人研究了碳化硅外延层和激光增强扩散对光导开关输出特性的影响,并分析了光导开关降级与损伤的主要因素[5]。相比其他构型,平面型器件具有可采用本征光触发的优点,光电转换效率更高[12]。本征光入射可分为正面入射与背面入射,背面光入射是一种功率容量更高的触发方式[13],当前器件两种不同触发方式下的光电响应缺乏对比,且SiC对典型波长355 nm紫外光的吸收深度为48 μm,器件响应会受到衬底厚度严重影响,为此开展了本征光垂直背入射SiC光导开关的光电响应特性研究。

    采用半导体数值模拟软件Silvaco分析平面SiC光导开关的光电特性,数值仿真的原理是对半导体物理方程进行求解,求解的方程包括泊松方程、半导体输运方程和载流子连续性方程[14]。电场分布的求解通过计算泊松方程实现,连续性和输运方程描述电子和空穴密度由于输运过程、生成过程和复合过程而演化的方式。考虑的物理模型包括低场迁移率模型、平行电场迁移率模型、费米-狄拉克统计模型、俄歇复合模型、Selb碰撞电离模型以及Shockley-Read-Hall复合模型。在仿真中,氮浓度被设置为1×1015 cm−3,深受主浓度为1×1017 cm−3,电子空穴俘获截面为1.5×10−14 cm2[15],触发激光波长为355 nm,仿真模拟电路和平面SiC光导开关示意图如图1所示,通过搭建50 Ω负载电阻RL与光导开关串联的回路,电极间距被设置为1 mm,以计算不同衬底厚度、不同入光方式下的光电流。

    图  1  仿真模型及电路示意图
    Figure  1.  Simulation model and circuit schematic diagram

    为对比正面与背面光入射的光电流输出,首先应分析光束宽度对输出光电流的影响,从而得到输出光电流最大的光束宽度。当激光从器件背面触发且峰值光功率不变时,不同光束宽度对应不同光功率密度,因此光电流输出会不同。在仿真中,光束宽度被设置为1.0~1.8 mm,偏置电压为0.5 kV,峰值光功率被设置为10 kW、100 kW,衬底厚度被设置为50 μm。输出光电流幅值如图2所示,结果表明当光束宽度与电极间距相等时,电极下方衬底没有光生载流子产生,导致电极下方电阻不能产生较多的光生载流子,造成输出降低;当光束宽度为1.1 mm时,此时光束宽度稍大于电极间距(1 mm),此时电极下方区域电阻受光触发减小因而提升了输出光电流;但光束宽度继续扩大时,峰值光功率密度随着宽度变大而不断减小,输出光电流反而降低,因此在仿真中光束宽度采用1.1 mm以输出最大光电流。

    图  2  不同光束宽度下光电流输出对比图
    Figure  2.  Comparison of photocurrent output under different beam widths

    4H-SiC本征光吸收深度较浅,入射光波长为355 nm时对应吸收深度约48 μm[12],采用背面光入射的光电流幅值会受衬底厚度显著影响,当衬底较厚时激光能量在衬底中迅速衰减,光生载流子分布在器件背面,无法在电极之间形成连续光生载流子通道,器件输出光电流较小。如图3(a)展示了不同峰值光功率(1 kW、10 kW、100 kW、1 MW)与不同衬底厚度下(50~300 μm)的光电流输出,当光峰值功率为10 kW时,50 μm与100 μm器件相比300 μm器件输出幅值分别降低了14%和5%,结果表明在50 μm-300 μm的衬底范围内,衬底厚度变化对正面入光器件的光电流幅值影响较小。图3(b)表明,衬底厚度小于100 μm内,衬底厚度对输出幅值影响较小,当峰值光功率为10 kW时,50 μm与100 μm输出变化不足5%;当衬底厚度大于100 μm,背面入光器件光电流迅速衰减,200 μm和300 μm相比50 μm输出幅值分别降低了60%和87%。因此,衬底厚度应被减薄到100 μm以内才能获得较大光电流响应,而衬底厚度对正面入光的触发方式影响较小,这是高导电区域均集中在表面的缘故。衬底厚度为50 μm时,不同峰值光功率下的仿真输出光电流如图4(a)所示,仿真结果表明,在峰值光功率为10~600 kW的条件下,背面光入射输出光电流显著高于正面光入射,其中40 kW峰值光功率下对应背面入光与正面入光的导通电阻分别为122 Ω和219 Ω,器件背面入光导通电阻减小44%。

    图  3  不同衬底厚度下正面与背面入光光电流幅值对比
    Figure  3.  Comparison of photocurrent amplitude under front and back illumination with different substrate thicknesses
    图  4  10 kW峰值光功率下正面背面入光典型仿真波形与平面器件等效电路
    Figure  4.  Typical simulation waveforms under front and back illumination with a 10 kW peak optical power and equivalent circuit of planar devices

    光导开关的导通电阻定义为

    Ron=U0/IpeakRL
    (1)

    式中:Ron为导通电阻,U0为偏置电压,Ipeak为光电流峰值,RL为负载电阻。当器件导通时,器件导通电阻随在激光辐照下迅速发生变化,平面器件导通电阻可被等效为三电阻串联(R1R2R3),如图4(b)所示,此时导通电阻为

    Ron=3m=1Rm3m=1nm(t)qmμm
    (2)

    式中:R1R3对应电极下方等效电阻,R2对应电极间等效电阻,n(t)为载流子浓度,q为电荷量,μ为载流子迁移率。当激光触发光导开关时,器件内部载流子主要为光生载流子,光生载流子浓度表示为

    n(t)=et/τrt0P(t)νhcλ(1R)(1eαd)et/τrdt
    (3)

    式中:P(t)为峰值光功率,h为普朗克常数,c为真空中的光速,R为表面反射率,α为吸收系数,d为光吸收深度,τr为载流子寿命。进一步,导通电阻计算式为

    R(t) = w2hvP(t)τrμ(1R)(1eαd)eη1P(t)
    (4)

    式中:w为电极间距。由式(4)可知,器件导通电阻与峰值光功率呈反比。当激光从器件正面入射时,受电极遮挡影响,电极下方的衬底无触发光通过,光生载流子n(t)少,因此位于电极下方的R1R3阻值较大,由式(2)可知器件导通电阻为R1R2R3叠加,因此器件导通电阻较大;反之,当器件采用背面入光的触发方式时,电极下方的R1R3会受到与R2同等功率的激光辐照,因此产生接近浓度的光生载流子,R1R3显著低于正面入光时的电阻,因而此时整体电阻较小。

    不同的光入射方式会令器件内部光生载流子浓度分布发生变化,进而影响电势与电场的分布情况。其中器件内部电流分布如图5所示,图5(a)表明采用背面入光的触发方式时,器件强电流区多数集中于器件背面,分布较为均匀;而正面入光则集中于器件表面,背面由于光强的衰减,对光电流幅值贡献较小。取表面作参考线a、b,两条线上的电场与电流密度大小如图6所示。相同峰值光功率下,背面入光器件表面峰值电场与最大电流密度均小于正面入光器件,其中最大电场强度与最大电流密度较正面入光减小90%和54%。电极下方的光生载流子有效削弱了纵向电场,因而实现了电场削弱。已有研究表明表面强电场与热应力是造成器件击穿与损伤的决定性因素,强电场与大电流密度会严重影响器件寿命与功率容量,因此相同条件下,器件采用背面入光具有实现更高功率容量与器件寿命潜力。

    图  5  器件内部电流分布示意图
    Figure  5.  Schematic diagram of current distribution inside the device
    图  6  器件表面电流密度与电场强度对比
    Figure  6.  Comparison of surface current density and electric field intensity in devices

    搭建了平面光导开关测试平台以验证仿真结果,测试器件与电路示意图如图7所示,器件尺寸为11 mm×10 mm,电极间距1 mm,根据仿真计算,器件厚度被减薄至50 μm以获得较高输出。电路由直流电压源与0.5 nF高压电容器为电路供电,射频信号通过同轴连接器提取到示波器,触发激光波长为355 nm。

    图  7  实验平台与测试器件示意图
    Figure  7.  Schematic diagram of the test device and experimental platform

    实验中偏置电压被设置为500 V,峰值光功率被设置为10 kW、40 kW、200 kW、600 kW、1.6 MW、3 MW,器件被激光从正面以及背面分别触发,输出光电流幅值如图8(a)所示,结果表明在不同光功率下,背面入光器件均具有较高的输出光电流,与仿真结果一致,其中在10 kW、40 kW、200 kW峰值光功率下,相比正面入光,背面入光器件分别增长了50%、49%、33%。峰值功率40 kW激光触发下典型光电流波形如图8(b)所示,此时背面入光与正面入光导通电阻分别为127 Ω和218 Ω,采用背面入光的器件导通电阻相比正面入光减小42%,与仿真结果相近,进一步验证了器件背面触发具有高响应的特点。

    图  8  输出光电流幅值对比与典型波形对比
    Figure  8.  Output amplitude comparison and typical waveform

    通过仿真与实验对本征光垂直背入射的平面SiC光导开关的光电流幅值响应进行了研究,仿真对比了光束宽度、衬底厚度、光峰值功率对器件所产生光电流幅值的影响,实验验证了器件本征光垂直背入射的高光电转换效率的优点。(1)背面入光器件衬底厚度在50~100 μm范围内具有较高光电流幅值。(2)器件背面入光能够有效降低表面电场与最大电流密度,具有实现大功率容量与高光电转换效率的潜力。(3)不同峰值光功率下,相比正面入光,器件背面入光均具有较高的光电流输出。

  • 图  1  激光无线能量传输系统

    Figure  1.  Laser wireless power transmission system

    图  2  光谱响应曲线及大气透射光谱[10]

    Figure  2.  Spectral response curves and atmospheric transmission spectra[10]

    图  3  光纤激光器光源[12]和半导体激光器光源[15]

    Figure  3.  Fiber laser light source[12] and laser diode light source[15]

    图  4  准直发射镜头[25]及APT系统工作图[14]

    Figure  4.  Collimated emission lens[25] and APT system working diagram[14]

    图  5  多激光多孔径合成发射技术及激光相控阵发射技术[27-28]

    Figure  5.  Multi-laser multi-aperture synthesis emission technology and laser phased array emission technology[27-28]

    图  6  808 nm十结激光电池的三维结构[32]

    Figure  6.  Three-dimensional structure of an 808 nm ten-junction laser cell[32]

    图  7  地面LWPT研究状况

    Figure  7.  Research status of ground-based LWPT

    图  8  SLIPT系统一些潜在应用[52]

    Figure  8.  SLIPT potential application series[52]

    图  9  水下激光无线能量传输系统研究近况

    Figure  9.  Recent Advances in Underwater LWPT Systems

    图  10  太空激光能量无线传输系统概念图

    Figure  10.  Conceptual diagram of wireless transmission of laser energy in space

    表  1  各类激光光源技术特点[8]

    Table  1.   Technical characteristics of various types of laser sources [8]

    laser type wavelength power effciency beam quality
    laser diode ultraviolet-infrared band high high poor
    thin disk laser infrared band high lower excellent
    fiber laser infrared band high high excellent
    下载: 导出CSV

    表  2  近红外激光器研究进展

    Table  2.   Research progress of near-infrared lasers

    year wavelength (laser type)/nm power/W efficiency/% References
    2003 940(diode) 1500 50 [11]
    2013 1070(fiber) 2000 30 [12]
    2014 793/(diode) 24 42.3 [13]
    2019 808/(diode) 400 49 [14]
    2021 808/(diode) 1162 [15]
    2021 910/(diode) 150 [16]
    2023 1000/(diode) 400 51.3 [17]
    2021 445/(diode) 1500 [18]
    2022 450/(diode) 1800 [19]
    2024 450/(diode) 2000 [20]
    下载: 导出CSV

    表  3  不同材料光伏电池发展

    Table  3.   Development of photovoltaic cells with different materials

    material wavelength/nm efficiency/% power/w year references
    GaInP63846.701.52022[37]
    63753.50102024[34]
    FAPbBr353243.020.072023[38]
    PBDB-TF:BTP-eC966036.200.012023[35]
    ITO-4Cl66031.602024[36]
    GaAs81052.70222006[39]
    80874.7072022[40]
    80851.5215.452023[41]
    80855.802024[33]
    GaAs/InGaAs106444.1012023[42]
    下载: 导出CSV
  • [1] Kim D, Abu-Siada A, Sutinjo A. State-of-the-art literature review of WPT: current limitations and solutions on IPT[J]. Electric Power Systems Research, 2018, 154: 493-502.
    [2] 唐亮, 仲元昌, 张成祥, 等. 激光无线传能关键技术研究现状及发展趋势[J]. 激光杂志, 2017, 38(10):28-32

    Tang Liang, Zhong Yuanchang, Zhang Chengxiang, et al. Research situation and development trend of laser wireless power transmission key technology[J]. Laser Journal, 2017, 38(10): 28-32
    [3] 李巍, 吴凌远, 王伟平, 等. 半导体激光无线传能中光伏电池转换效率[J]. 强激光与粒子束, 2018, 30:119001 doi: 10.11884/HPLPB201830.180097

    Li Wei, Wu Lingyuan, Wang Weiping, et al. Power conversion efficiency of photovoltaic cells in semiconductor laser wireless power transmission[J]. High Power Laser and Particle Beams, 2018, 30: 119001 doi: 10.11884/HPLPB201830.180097
    [4] Fakidis J, Videv S, Kucera S, et al. Indoor optical wireless power transfer to small cells at nighttime[J]. Journal of Lightwave Technology, 2016, 34(13): 3236-3258.
    [5] DARPA. POWER: persistent optical wireless energy relay[EB/OL]. [2024-12-31]. https://www.darpa.mil/research/programs/power.
    [6] INESC TEC developed high-power optic fibre laser to power nano satellites[EB/OL]. [2024-12-31]. https://www.inesctec.pt/en/news/inesc-tec-developed-high-power-optic-fibre-laser-to-power-nano-satellites.
    [7] Xu Wanli, Wang Xudong, Li Weishi, et al. Research on test and evaluation method of laser wireless power transmission system[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022: 20.
    [8] Mason R. Feasibility of laser power transmission to a high-altitude unmanned aerial vehicle[R]. RAND Corporation, 2011.
    [9] Polman A, Knight M, Garnett E C, et al. Photovoltaic materials: present efficiencies and future challenges[J]. Science, 2016, 352: aad4424. doi: 10.1126/science.aad4424
    [10] Krupke W F, Beach R J, Payne S A, et al. DPAL: a new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths[J]. AIP Conference Proceedings, 2004, 702(1): 367-377.
    [11] Blackwell T. Recent demonstrations of Laser power beaming at DFRC and MSFC[J]. AIP Conference Proceedings, 2005, 766(1): 73-85.
    [12] Sprangle P, Hafizi B, Ting A, et al. High-power lasers for directed-energy applications[J]. Applied Optics, 2015, 54(31): F201-F209.
    [13] He Tao, Yang Suhui, Zhang Haiyang, et al. High-power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter[J]. Chinese Physics Letters, 2014, 31: 104203.
    [14] 时振磊, 孟文文, 申景诗, 等. 无人机激光无线能量传输APT系统跟踪设计[J]. 激光技术, 2019, 43(6):809-814 doi: 10.7510/jgjs.issn.1001-3806.2019.06.015

    Shi Zhenlei, Meng Wenwen, Shen Jingshi, et al. Tracking design of APT system of laser wireless energy transmission for unmanned aerial vehicle[J]. Laser Technology, 2019, 43(6): 809-814 doi: 10.7510/jgjs.issn.1001-3806.2019.06.015
    [15] 李娟, 俞浩, 虞天成, 等. 用于无线能量传输的高效率半导体激光器设计[J]. 红外与激光工程, 2021, 50:20210147 doi: 10.3788/IRLA20210147

    Li Juan, Yu Hao, Yu Tiancheng, et al. Design of high efficiency diode laser module for wireless power transmission[J]. Infrared and Laser Engineering, 2021, 50: 20210147 doi: 10.3788/IRLA20210147
    [16] Ge Chenhao, Sun Lili, Zhong Yuanchang. Design and experimental research of laser wireless power transmission system[C]//Proceedings of the 4th International Symposium on Power Electronics and Control Engineering. 2021: 120800S.
    [17] Semiconductor laser and power converter for optical wireless power transmission[EB/OL]. [2024-12-31]. https://www.everbrightphotonics.com/news/46.html.
    [18] Feve J P, Finuf M, Fritz R, et al. Scalable blue laser system architecture[C]//Proceedings of High-Power Diode Laser Technology XVIII. 2020: 112620P.
    [19] Chann B, Villarreal F J, Zhou Wanglong, et al. Advances in blue high-power/high-brightness direct diode lasers using wavelength beam combining[C]//Proceedings of High-Power Diode Laser Technology XX. 2022: PC1198307.
    [20] Wu Yueting, Zhang Fengchao, Zhang Xinning, et al. Manufacturing and reliability analysis of high-brightness blue light semiconductor laser[C]//Proceedings of High-Power Diode Laser Technology XXII. 2024: 128670D.
    [21] Haid M, Armbruster C, Derix D, et al. 5 W optical power link with generic voltage output and modulated data signal[C]//Proceedings of the 1st Optical Wireless and Fiber Power Transmission Conference. 2019.
    [22] Yigit H, Boynuegri A R. Pulsed laser diode based wireless power transmission application: determination of voltage amplitude, frequency, and duty cycle[J]. IEEE Access, 2023, 11: 54544-54555.
    [23] 乔良, 杨雁南. 激光无线能量传输效率的实验研究[J]. 激光技术, 2014, 38(5):590-594 doi: 10.7510/jgjs.issn.1001-3806.2014.05.003

    Qiao Liang, Yang Yannan. Experimental research of laser wireless power transmission efficiency[J]. Laser Technology, 2014, 38(5): 590-594 doi: 10.7510/jgjs.issn.1001-3806.2014.05.003
    [24] 程坤, 董昊, 蔡卓燃, 等. 高效率远距离激光无线能量传输方案设计[J]. 航天器工程, 2015, 24(1):8-12 doi: 10.3969/j.issn.1673-8748.2015.01.002

    Cheng Kun, Dong Hao, Cai Zhuoran, et al. Scheme design of high efficiency long distance laser power transmission[J]. Spacecraft Engineering, 2015, 24(1): 8-12 doi: 10.3969/j.issn.1673-8748.2015.01.002
    [25] 孟祥翔, 尚涵, 辛明瑞, 等. 激光无线能量传输发射光学系统研制[J]. 红外与激光工程, 2023, 52:20230115 doi: 10.3788/IRLA20230115

    Meng Xiangxiang, Shang Han, Xin Mingrui, et al. Development of emission optical system for laser wireless power transmission[J]. Infrared and Laser Engineering, 2023, 52: 20230115 doi: 10.3788/IRLA20230115
    [26] 袁建华, 黄开, 洪沪生, 等. 激光供能无人机的一种优化跟踪算法[J]. 应用光学, 2020, 41(1):194-201 doi: 10.5768/JAO202041.0107002

    Yuan Jianhua, Huang Kai, Hong Husheng, et al. Optimal tracking algorithm for laser powered unmanned aerial vehicles[J]. Journal of Applied Optics, 2020, 41(1): 194-201 doi: 10.5768/JAO202041.0107002
    [27] 李向阳, 吴世臣, 李钟晓. 激光无线能量传输技术应用及其发展趋势[J]. 航天器工程, 2015, 24(1):1-7 doi: 10.3969/j.issn.1673-8748.2015.01.001

    Li Xiangyang, Wu Shichen, Li Zhongxiao. Laser wireless power transmission technology and its development trend[J]. Spacecraft Engineering, 2015, 24(1): 1-7 doi: 10.3969/j.issn.1673-8748.2015.01.001
    [28] 田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35:041001 doi: 10.11884/HPLPB202335.220305

    Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001 doi: 10.11884/HPLPB202335.220305
    [29] 严豪健, 符养, 洪振杰, 等. 现代大气折射引论[M]. 上海: 上海科技教育出版社, 2006

    Yan Haojian, Fu Yang, Hong Zhenjie, et al. Introduction to modern atmospheric refraction[M]. Shanghai: Shanghai Science and Technology Education Press, 2006
    [30] 罗传伟, 焦明印. 光学系统折射率温度效应的模拟计算[J]. 应用光学, 2008, 29(2):234-239 doi: 10.3969/j.issn.1002-2082.2008.02.016

    Luo Chuanwei, Jiao Mingyin. Simulated calculation for effect of temperature on refractive index in optical system[J]. Journal of Applied Optics, 2008, 29(2): 234-239 doi: 10.3969/j.issn.1002-2082.2008.02.016
    [31] 宋正方. 应用大气光学基础[M]. 北京: 气象出版社, 1990

    Song Zhengfang. Fundamentals of applied atmospheric optics[M]. Beijing: China Meteorological Press, 1990
    [32] Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%[J]. Applied Physics Letters, 2016, 109: 131107. doi: 10.1063/1.4964120
    [33] Chen Y J, Mou Z Q, Wang J, et al. 808 nm Laser power converters for simultaneous wireless information and power transfer[J]. IEEE Journal of Photovoltaics, 2024, 14(6): 890-900.
    [34] Sanmartín P, Fernández E F, García-Loureiro A, et al. Design and characterization of a 53.5% efficient gallium indium phosphide-based optical photovoltaic converter under 637 nm laser irradiation at 10 W cm−2[J]. Solar RRL, 2024, 8: 2400278. doi: 10.1002/solr.202400278
    [35] Wang Yafei, Zheng Zhong, Wang Jianqiu, et al. Organic laser power converter for efficient wireless micro power transfer[J]. Nature Communications, 2023, 14: 5511.
    [36] Wang Yafei, Cui Yong, Wang Jianqiu, et al. Highly efficient and stable organic photovoltaic cells for underwater applications[J]. Advanced Materials, 2024, 36(27): 2402575. doi: 10.1002/adma.202402575
    [37] Kurooka K, Honda T, Komazawa Y, et al. A 46.7% efficient GaInP photonic power converter under high-power 638 nm laser uniform irradiation of 1.5 W cm−2[J]. Applied Physics Express, 2022, 15: 062003.
    [38] Guo Xin, Chen Xiaoming, Li Qingyuan, et al. High efficiency wide-bandgap perovskite solar cells for laser energy transfer underwater[J]. Energy Technology, 2023, 11: 2300083.
    [39] Krut D, Sudharsanan R, Isshiki T, et al. A 53% high efficiency GaAs vertically integrated multi-junction laser power converter[C]//Proceedings of 2007 65th Annual Device Research Conference. 2007: 123-124.
    [40] Fafard S, Masson D P. 74. 7% Efficient GaAs-based laser power converters at 808 nm at 150 K[J]. Photonics, 2022, 9: 579.
    [41] Gou Yudan, Wang Hao, Wang Jun, et al. High-performance laser power converts for direct-energy applications[J]. Optics Express, 2022, 30(17): 31509-31517.
    [42] Kalyuzhnyy N A, Emelyanov V M, Mintairov S A, et al. InGaAs metamorphic laser (λ=1064 nm) power converters with over 44% efficiency[J]. AIP Conference Proceedings, 2018, 2012: 110002.
    [43] Lee S, Lim N, Choi W, et al. Study on battery charging converter for MPPT control of laser wireless power transmission system[J]. Electronics, 2020, 9: 1745.
    [44] Zhou Weiyang, Jin Ke, Zhang Ran. A fast-speed GMPPT method for PV array under Gaussian laser beam condition in wireless power transfer application[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 10016-10028.
    [45] Steinsiek F, Weber K H, Foth W P, et al. Wireless Power Transmission Experiment using an airship as relay system and a moveable rover as ground target for later planetary exploration missions[C]//Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. 2004: 1-10.
    [46] Kawashima N, Takeda K, Matsuoka H, et al. Laser energy transmission for a wireless energy supply to robots[C]//Proceedings of the 22nd International Symposium on Automation and Robotics in Construction. 2005.
    [47] 李振宇, 石德乐, 申景诗, 等. 基于激光的无线能量传输技术[J]. 空间电子技术, 2013, 10(3):71-76 doi: 10.3969/j.issn.1674-7135.2013.03.016

    Li Zhenyu, Shi Dele, Shen Jingshi, et al. Laser wireless power transmission technology[J]. Space Electronic Technology, 2013, 10(3): 71-76 doi: 10.3969/j.issn.1674-7135.2013.03.016
    [48] Shi Dele, Zhang Longlong, Ma Haihong, et al. Research on Wireless Power transmission system between satellites[C]//Proceedings of 2016 IEEE Wireless Power Transfer Conference. 2016: 1-4.
    [49] Zheng Y F, Zhang G D, Huan Z H, et al. Wireless laser power transmission: recent progress and future challenges[J]. Space Solar Power and Wireless Transmission, 2024, 1(1): 17-26. doi: 10.1016/j.sspwt.2023.12.001
    [50] Uppal R. DARPA airborne energy well seeks laser propulsion on aircrafts to power rechargable unmanned aerial systems[R]. International Defense Security Technology, 2022.
    [51] Nguyen D H. Dynamic optical wireless power transfer for electric vehicles[J]. IEEE Access, 2023, 11: 2787-2795. doi: 10.1109/ACCESS.2023.3234577
    [52] Papanikolaou V K, Tegos S A, Palitharathna K W S, et al. Simultaneous Lightwave information and power transfer in 6G networks[J]. IEEE Communications Magazine, 2024, 62(3): 16-22. doi: 10.1109/MCOM.002.2300290
    [53] Kim S M, Choi J, Jung H. Experimental demonstration of underwater optical wireless power transfer using a laser diode[J]. Chinese Optics Letters, 2018, 16: 080101. doi: 10.3788/COL201816.080101
    [54] Kim S M, Kwon D. Transfer efficiency of underwater optical wireless power transmission depending on the operating wavelength[J]. Current Optics and Photonics, 2020, 4(6): 571-575.
    [55] Tai Y, Miyamoto T. Experimental characterization of high tolerance to beam irradiation conditions of light beam power receiving module for optical wireless power transmission equipped with a fly-eye lens system[J]. Energies, 2022, 15: 7388.
    [56] Zhu Xuegui, Yu Wenchao, Liu Gengjian, et al. The influence of steady-state thermal blooming effect on the quality of underwater laser power transmission[J]. AIP Advances, 2024, 14: 035214.
    [57] Takahashi R, Hayashi S, Watanabe K, et al. Optical wireless power transmission under deep seawater using GaInP solar cells[J]. Energies, 2024, 17: 1572.
    [58] Mankins J, Kaya N, Vasile M. SPS-ALPHA: the first practical solar power satellite via arbitrarily large phased array (a 2011-2012 NIAC project)[C]//Proceedings of the 10th International Energy Conversion Engineering Conference. 2012.
    [59] 俄罗斯将在国际空间站进行利用激光进行无线输电实验[EB/OL]. [2024-12-31]. http://wptchina.com.cn/ReadNews.asp?rid=2089

    Russia will conduct experiments on wireless transmission using laser at the international space station[EB/OL]. [2024-12-31]. http://wptchina.com.cn/ReadNews.asp?rid=2089.
    [60] First in-space laser power beaming experiment surpasses 100 days of successful on-orbit operations[EB/OL]. https://www.globenewswire.com/news-release/2023/07/13/2704532/0/en/First-In-Space-Laser-Power-Beaming-Experiment-Surpasses-100-Days-of-Successful-On-Orbit-Operations.html.
    [61] Abdullah S, Mulles P J S, Amaya R E. A new adaptive wireless power transfer solution for use with space rovers and vehicles[C]//Proceedings of 2022 IEEE International Conference on Wireless for Space and Extreme Environments. 2022: 49-54.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  33
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-06
  • 修回日期:  2025-02-24
  • 录用日期:  2025-02-20
  • 网络出版日期:  2025-03-24

目录

/

返回文章
返回