High performance organic phototransistor fabricated by spray technology
-
摘要: 以聚3-己基噻吩(P3HT)为有机层、价格低廉的聚甲基丙烯酸甲酯(PMMA)为绝缘层制备了底栅顶接触型结构的有机薄膜晶体管(OTFT)。采用一种新型喷雾工艺来制备器件的有机薄膜层,通过测量有机薄膜晶体管的电学特性,可得出应用喷雾制备的器件有较好的性能。在100 mW/cm2标准模拟太阳光照下,测量基于P3HT的有机薄膜晶体管器源漏电流随时间的变化特性,结果表明基于P3HT的有机光敏薄膜晶体管,不仅具有明显的响应特性,而且具有很好的恢复特性。同时,对比黑暗和光照1,2,4 min下的OTFT特性转移曲线,得到器件的阈值电压随时间的变化曲线。Abstract: An organic phototransistor was fabricated by an innovative spray technology suited to large-area, low-cost and room temperature processing for organic electronic and thin-film devices. Top contact organic thin film transistors (OTFTs) were fabricated with poly(3-hexylthiophene) (P3HT) active layer and low cost polymerthylmethacrylate (PMMA) insulator,which exhibit a good output and the transfer characteristics of P3HT transistors. The OTFT device based on P3HT was measured under a standard solar simulator circumstance of 100 mW/cm2. The responses of the OTFT are remarkable in the absence or the presence of light, with good reversibility and repeatability. It was found that the threshold voltage shift was obvious, after comparing the characteristic curves of the OTFT exposed to darkness and light for 1 min, 2 min, and 4 min.
-
Key words:
- spray technology /
- organic phototransistor /
- reversibility /
- threshold voltage shift
点击查看大图
计量
- 文章访问数: 1492
- HTML全文浏览量: 198
- PDF下载量: 525
- 被引次数: 0