Molecular beam epitaxy growth and characterization of low-temperature InGaAs/InAlAs multiple quantum wells
-
摘要: 采用气源分子束外延(GSMBE)生长了低温InGaAs材料,研究了生长温度及As压对InGaAs材料性质的影响,得到优化的生长条件为:生长温度为300 ℃、As压为77.3 kPa。通过Be掺杂,并采用In0.52Al0.48As/In0.53Ga0.47As多量子阱结构,将材料的方块电阻提高到1.632106 /Sq,载流子数密度降低至1.0581014 cm-3。X射线衍射结果表明:InGaAs多量子阱材料具有较高的晶体质量。这种Be掺杂InGaAs多量子阱材料缺陷密度大且电阻率高,是制作太赫兹光电导天线较理想的基质材料。收稿日期:; 修订日期:
-
关键词:
- 低温InGaAs /
- InGaAs/InAlAs /
- 多量子阱 /
- 分子束外延
Abstract: Low temperature (LT) InGaAs materials were grown by gas source molecular beam epitaxy, and the influence of growth temperature as well as arsenic pressure on InGaAs material properties was studied. The optimized deposition conditions were established with the growth temperature of 300 ℃ and the arsenic pressure of 77.3 kPa. By using the structure of In0.52Al0.48As/In0.53Ga0.47As multiple quantum well and doping with Be into InGaAs layers, the resistance of LT-InGaAs material was increased to 1.632106 /Sq, and the carrier concentration was reduced to 1.0581014 cm-3. X-ray diffraction measurements show that LT-InGaAs multiple quantum wells have perfect crystal quality. This multiple quantum well material doped with Be has high trap density and high resistivity, which is suitable material for THz photoconductive antennas.-
Key words:
- low-temperature InGaAs /
- InGaAs/InAlAs /
- multiple quantum wells /
- molecular beam epitaxy
点击查看大图
计量
- 文章访问数: 1842
- HTML全文浏览量: 338
- PDF下载量: 277
- 被引次数: 0