Ultrafast diagnosis of shock wave propagation in air and fused silica interface
-
摘要: 基于球面波在弹性介质界面上的反射和折射特性的基本理论,采用超快时间分辨的光学诊断技术,研究了532 nm纳秒激光辐照熔石英元件表面产生的冲击波在空气和样品界面的传播特性,获得了冲击波在材料内部传输以及在空气与样品界面反射的时间分辨图像。结果表明:激光脉冲与材料作用在前后表面产生了向体内传输的冲击波,且产生的冲击波在玻璃与空气界面处反射为两个波,即反射波和反射剪切波;反射波和反射剪切波的强度与入射冲击波的入射角有关。Abstract: Propagation characteristics of the shock waves induced by nanosecond laser in material were investigated by ultrafast time-resolved optical diagnosis and studied based on the basic theories of the reflection and refraction of spherical waves across a planar interface. The evolution processes of time-resolved optical images of shock waves propagation in material and plasmas expansion in air were obtained. Moreover, the reflection and refraction waves would be yielded when the generated shock waves arrived at the surface of the sample. Meanwhile, it was found that the intensity of the reflection and the refraction waves at the interface was determined by the incident angle of the shock wave, and the velocity of shock wave propagating in material was different for different shock waves.
-
Key words:
- pulse laser /
- shock wave /
- plasma /
- ultrafast diagnosis
点击查看大图
计量
- 文章访问数: 1315
- HTML全文浏览量: 241
- PDF下载量: 499
- 被引次数: 0