Yang Shi, Ren Shuqing, Lai Dingguo, et al. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27: 095006. doi: 10.11884/HPLPB201527.095006
Citation: Wei Jifeng, Zhang Wei, He Junzhang, et al. Calibration methods and calibration systems of water-absorption-type high energy laser energy meters[J]. High Power Laser and Particle Beams, 2014, 26: 120201. doi: 10.11884/HPLPB201426.120201

Calibration methods and calibration systems of water-absorption-type high energy laser energy meters

doi: 10.11884/HPLPB201426.120201
  • Received Date: 2014-10-18
  • Rev Recd Date: 2014-10-30
  • Publish Date: 2014-12-16
  • Water-absorption-type high energy laser energy meters are widely applied to the energy measurement of high energy lasers for their high efficiency in the heat exchange. However, its calibration is a considerable difficulty for the absence of high power standard lasers. A calibration method for the high energy laser energy meter with the electric heating wires was introduced, and water was led into a heating container at the entrance of the absorption cavity. Then it is heated before flowing into the absorption cavity. The energy absorbed by the water flow was estimated and compared with the one measured by the energy meter to calibrate the energy meter. The conclusion can be drawn that the heat exchange modal of the calibration system is just the same with the one in the absorption cavity. They include two stages, in the first stage energy is stored and in the second stage the power reaches equivalent. The scattering of the flow and the gas has few effects on the measurement results, and the effects can be ignored after the results are calibrated. It can be concluded that the remaining energy and the flow rate have great effects on the measurement results and the effects caused by remaining energy on the measurement uncertainty can be efficiently decreased by increasing the volume of the reservoir. The measurement uncertainty was estimated at 4.8%(k=2) after it was calibrated, and the calibrated high energy laser energy meter was compared with the other measurement systems, yielding a calibration coefficient of 1.006 and a standard deviation of 1.4% (k=2).
  • Relative Articles

    [1]Zhou Tao, Hu Ning, Gai Longjie, Huang Wentao, Xu Yanlin, Liu Peiguo. Design of an S-band ultra-wideband energy selective surface[J]. High Power Laser and Particle Beams, 2024, 36(3): 033003. doi: 10.11884/HPLPB202436.230369
    [2]Zhang Wei, Xu Sha, Qin Fen, Lei Lurong, Wang Dong, Zhang Yong, Ju Bingquan, Cui Yue. Design of a compact S-band relativistic magnetron operating at low magnetic field[J]. High Power Laser and Particle Beams, 2023, 35(9): 093001. doi: 10.11884/HPLPB202335.230058
    [3]Gao Bin, Pei Shilun, Wang Hui, Zhao Shiqi, Chi Yunlong. Development of S-band hybrid bunching-accelerating structure prototype[J]. High Power Laser and Particle Beams, 2021, 33(2): 024002. doi: 10.11884/HPLPB202133.200162
    [4]Li Ye, Li Dongfeng, Wang Ziwei, Yan Song. Development of S-band ultra wideband high average power multi-beam klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103005. doi: 10.11884/HPLPB202032.200202
    [5]Yuan Huan, Huang Hua, He Hu, Ge Yi, Meng Fanbao, Chen Changhua. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29(11): 113001. doi: 10.11884/HPLPB201729.170133
    [6]Ye Hu, Cui Xinhong, Xiong Zhengfeng. Compact V-band overmoded mode-selective coupler with diamond apertures[J]. High Power Laser and Particle Beams, 2016, 28(09): 093006. doi: 10.11884/HPLPB201628.150842
    [7]Lei Lurong, Yuan Huan, Liu Zhenbang, Huang Hua, He Hu, Huang Jijin. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023003. doi: 10.11884/HPLPB201628.023003
    [8]Zhang Xin’ge, Li Shaofu, Li Bo, Deng Yuan, Li Ya’nan, Wang Lanlan. Circular waveguide TM01-TE11 mode converter[J]. High Power Laser and Particle Beams, 2014, 26(08): 083003. doi: 10.11884/HPLPB201426.083003
    [9]Chen Zhaofu, Chang Anbi, Huang Hua, Liu Zhenbang, He Hu. Numerical simulations of S-band multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2012, 24(03): 743-746. doi: 10.3788/HPLPB20122403.0743
    [10]shen baoli, zhang zhaochuan, huang yunping. Development of output section for S-band broadband high-average-power klystron[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [11]bai xianchen, yang jianhua, zhang jiande, zhang zehai. Influence of electron beam collector on output cavity efficiency of wide-gap klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [12]bai xianchen, zhang jiande, yang jianhua. 3-D simulation of S-band wide-gap klystron amplifier output cavity[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [13]cao nai-sheng, luo yong, wang jian-xun. Design of aperture-coupling directional coupler[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [14]gan yan-qing, huang hua, lei lu-rong, zhang yong-hui, jin xiao, ju bing-quan, xiang fei, xu zhou. Experimental investigation on an S-band relativistic klystron oscillator[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [15]lei lu-rong, fan zhi-kai, huang hua, ding en-yan, zhang xing-kai, chen zhi-gang, feng di-chao, yu ai-ming, liu tian-wen, yang zhou-bing, an hai-shi. Design and investigation of S-band klystron double-gap output cavity[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [16]lei lu-rong, fan zhi-kai, huang hua, he hu. Particle simulation of relativistic klystron amplifier double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [17]huang hua, fan zhi-kai, meng fan-ba, tan jie, luo guang-yao, cao shao-yun, lei lu-rong, wu yong, li zheng-hong, zhou hai-jing, zhang bei-zhen, li chun-xia. Investigation on S-band long pulse relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [18]ge cheng-liang, liang zheng, yang zi-qiang. Particle simulation on S-band relativistic two-stream amplifier[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
  • Cited by

    Periodical cited type(7)

    1. 甘延青,罗光耀,李飞,张北镇,李春霞,王淦平,金晓,宋法伦. 大功率重复频率高电压脉冲充电电源研制. 强激光与粒子束. 2025(03): 22-29 . 本站查看
    2. 江进波,徐林,罗正,杨文,唐铭,姚延东,陈锐. 基于LC串联谐振的高压恒流充电电源设计. 强激光与粒子束. 2024(05): 46-53 . 本站查看
    3. 冯传均,伍友成,何泱,戴文峰,付佳斌,刘宏伟. 正负双极性重复频率充电电源研制. 强激光与粒子束. 2023(03): 121-127 . 本站查看
    4. 冯传均,何泱,戴文峰,伍友成,付佳斌,王敏华. 串联谐振高压电容充电电源设计及分析. 强激光与粒子束. 2019(05): 55-60 . 本站查看
    5. 蔡政平,李伟松. 太赫兹器件测试用高重复频率高压脉冲电源. 强激光与粒子束. 2018(02): 62-67 . 本站查看
    6. 张彬,杨欣欣,周赛,蔡晨,赵辉,韩吉庆,潘忠泉. 波长校准用低压石英汞灯驱动电源的研制. 化学分析计量. 2017(02): 106-109 .
    7. 缪亚运,谷鸣,陈志豪,童金. 质子治疗装置脉冲电源研制. 核技术. 2016(04): 32-36 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 75.7 %META: 75.7 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.2 %其他: 3.2 %China: 0.6 %China: 0.6 %Colonia Madero (Madero): 0.3 %Colonia Madero (Madero): 0.3 %India: 0.1 %India: 0.1 %United States: 0.7 %United States: 0.7 %[]: 0.1 %[]: 0.1 %上海: 3.2 %上海: 3.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 18.6 %北京: 18.6 %南京: 0.2 %南京: 0.2 %台州: 2.2 %台州: 2.2 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.2 %广州: 0.2 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 0.2 %张家口: 0.2 %悉尼: 0.3 %悉尼: 0.3 %成都: 2.6 %成都: 2.6 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.1 %扬州: 0.1 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.4 %杭州: 2.4 %武汉: 0.2 %武汉: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.2 %淄博: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 18.1 %芒廷维尤: 18.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 40.7 %西宁: 40.7 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %龙岩: 0.1 %龙岩: 0.1 %其他ChinaColonia Madero (Madero)IndiaUnited States[]上海中山临汾丹东北京南京台州合肥咸阳嘉兴宣城广州弗吉尼亚州张家口悉尼成都成都市双流区扬州昆明普洱杭州武汉海口淄博深圳温州湖州漯河石家庄秦皇岛芒廷维尤芝加哥苏州莆田衡阳衢州襄阳西宁西安贵阳运城邯郸郑州重庆长春长治阳泉龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1421) PDF downloads(473) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return