Xia Zhiyang, Kuang Yuanyuan, Lu Yan, et al. High-resolution reconstruction of the ablative RT instability flow field via convolutional neural networks[J]. High Power Laser and Particle Beams, 2024, 36: 122004. doi: 10.11884/HPLPB202436.240015
Citation: Wei Jifeng, Zhang Wei, He Junzhang, et al. Calibration methods and calibration systems of water-absorption-type high energy laser energy meters[J]. High Power Laser and Particle Beams, 2014, 26: 120201. doi: 10.11884/HPLPB201426.120201

Calibration methods and calibration systems of water-absorption-type high energy laser energy meters

doi: 10.11884/HPLPB201426.120201
  • Received Date: 2014-10-18
  • Rev Recd Date: 2014-10-30
  • Publish Date: 2014-12-16
  • Water-absorption-type high energy laser energy meters are widely applied to the energy measurement of high energy lasers for their high efficiency in the heat exchange. However, its calibration is a considerable difficulty for the absence of high power standard lasers. A calibration method for the high energy laser energy meter with the electric heating wires was introduced, and water was led into a heating container at the entrance of the absorption cavity. Then it is heated before flowing into the absorption cavity. The energy absorbed by the water flow was estimated and compared with the one measured by the energy meter to calibrate the energy meter. The conclusion can be drawn that the heat exchange modal of the calibration system is just the same with the one in the absorption cavity. They include two stages, in the first stage energy is stored and in the second stage the power reaches equivalent. The scattering of the flow and the gas has few effects on the measurement results, and the effects can be ignored after the results are calibrated. It can be concluded that the remaining energy and the flow rate have great effects on the measurement results and the effects caused by remaining energy on the measurement uncertainty can be efficiently decreased by increasing the volume of the reservoir. The measurement uncertainty was estimated at 4.8%(k=2) after it was calibrated, and the calibrated high energy laser energy meter was compared with the other measurement systems, yielding a calibration coefficient of 1.006 and a standard deviation of 1.4% (k=2).
  • Relative Articles

    [1]Cai Hongbo, Zhou Cangtao, Jia Qing, Wu Sizhong, He Minqing, Cao Lihua, Chen Mo, Zhang Hua, Liu Jie, Zhu Shaoping, He Xiantu. Laser-driven relativistic electron beam for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032001. doi: 10.11884/HPLPB201527.032001
    [2]Tian Chao, Shan Lianqiang, Zhou Weimin, Liu Dongxiao, Bi Bi, Zhang Feng, Wang Weiwu, Gu Yuqiu, Zhang Baohan. Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(09): 092010. doi: 10.11884/HPLPB201527.092010
    [3]Jiang Baibin, Li Guo, Du Kai, Wei Jianjun, Tong Weichao, Yuan Guanghui, Yang Hong. Effect of micro cutting force on fabrication of Au cone-wire target for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(09): 092002. doi: 10.11884/HPLPB201527.092002
    [4]Zhou Weimin, Shan Lianqiang, Wu Junfeng, Cai Hongbo, Liu Dongxiao, Liu Hongjie, Bi Bi, Zhang Feng, Wang Weiwu, Wu Fengjuan, Zhu Bin, Wu Yuchi, Wen Xianlun, He Yinglin, Zhou Cangtao, Cao Lihua, Wu Sizhong, Wei Lai, Cao Zhurong, Yuan Zheng, Yang Zhiwen, Gu Yuqiu, Zhang Baohan. Material mixing of cone-in-shell targets for indirect-drive fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032017. doi: 10.11884/HPLPB201527.032017
    [5]Wu Sizhong, Zhang Hua, Zhou Cangtao, Wu Junfeng, Cai Hongbo, Cao Lihua, He Minqing, Zhu Shaoping, He Xiantu. Energy deposition of fast electrons in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032010. doi: 10.11884/HPLPB201527.032010
    [6]Gu Yuqiu, Zhang Feng, Shan Lianqiang, Bi Bi, Chen Jiabin, Wei Lai, Li jin, Song Zifeng, Liu Zhongjie, Yang Zhuhua, Yu Minghai, Cui Bo, Zhang Yi, Liu Hongjie, Liu Dongxiao, Wang Weiwu, Dai Zenghai, Yang Yimeng, Yang Lei, Zhang Faqiang, Wu Xiaojun, Du Kai, Zhou Weimin, Cao Leifeng, Zhang Baohan, Wu Junfeng, Ren Guoli, Cai Hongbo, Wu Shizhong, Cao Lihua, Zhang Hua, Zhou Cangtao, He Xiantu. Initial indirect cone-in-shell fast ignition integrated experiment on Shengguang Ⅱ-updated facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 110101. doi: 10.11884/HPLPB201527.110101
    [7]Wang Yanbin. New concept and structure of fast ignition target[J]. High Power Laser and Particle Beams, 2015, 27(03): 032032. doi: 10.11884/HPLPB201527.032032
    [8]Bi Bi, Shan Lianqiang, Zhou Weimin, Liu Dongxiao, Cao Leifeng, Gu Yuqiu, Zhang Baohan. Implosion emission image processing for cone-shell target of fast ignition[J]. High Power Laser and Particle Beams, 2014, 26(09): 092002. doi: 10.11884/HPLPB201426.092002
    [9]Liu Meifang, Liu Yiyang, Shi Ruiting, Chen Sufen, Su Lin, Li Jing, Li Jie, Li Bo, Zhang Zhanwen. Effect of oil phase and water phase on wall thickness of polymer microspheres prepared by agitation method[J]. High Power Laser and Particle Beams, 2013, 25(06): 1370-1374. doi: 10.3788/HPLPB20132506.1370
    [10]Wang Wei, Fang Zhiheng, Jia Guo, Wang Ruirong, An Honghai, Xie Zhiyong, Ye Junjian, Zhou Huazhen, Wang Chen, Wu Jiang, Lei Anle, Fu Sizu. Direct-drive cylindrical target compression at Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(09): 2303-2306. doi: 10.3788/HPLPB20132509.2303
    [11]Zhou Weimin, Gu Yuqiu, Shan Lianqiang, Liu Hongjie, Liu Dongxiao, Zhang Baohan. Experiment on measurement of fuel symmetry and density of cone-in-shell target for fast ignition[J]. High Power Laser and Particle Beams, 2013, 25(12): 3135-3138. doi: 3135
    [12]Wang Yanbin. Parameter window for fast ignition calculated by Monte-Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(01): 123-128.
    [13]zhou yi, shen chao, zhang junwei, wang xiao, zhou hai. Structure design of high accuracy 2×2 array grating[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]chen mo. Collisional effects on hot electron transport in a dense solid carbon thin foil irradiated by ultrahigh intensity lasers[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [15]yang yuchuan, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin, luo hui. Laser driver beam combination for fast ignition[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [16]fang zhiheng, zhang mengjie, wang wei, dong jiaqin, ye junjian, xiong jun, wang ruirong, wang chen, sun jinren, wu jiang, fu sizu, gu yuan, wang shiji. Laser pulse shape optimization for flat target compression[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]xiong jun, wang chen, fang zhi-heng, wang rui-rong, wang shi-ji. Influnce of Au cone on distribution of forward hot electrons[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [18]zuo yan-lei, wei xiao-feng, zhu qi-hua, wang xiao, guo yi, huang zheng, liu hong-jie, ying chun-tong. Design of an arrayed grating compressor based on far-field[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [19]lu rong-hua, han shen-sheng. Model of fast ignition by exploding push[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [20]zuo yan-lei, wei xiao-feng, zhu qi-hua, wang xiao, guo yi, huang zheng, liu hong-jie, ying chun-tong. Coherent addition of ultrashort pulses for the fast-ignition study[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.2 %FULLTEXT: 24.2 %META: 73.3 %META: 73.3 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.3 %其他: 3.3 %China: 0.2 %China: 0.2 %Davis: 0.3 %Davis: 0.3 %India: 0.1 %India: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %内江: 0.1 %内江: 0.1 %北京: 19.1 %北京: 19.1 %十堰: 0.1 %十堰: 0.1 %南平: 0.1 %南平: 0.1 %卡纳塔克: 0.3 %卡纳塔克: 0.3 %厦门: 0.2 %厦门: 0.2 %台州: 1.0 %台州: 1.0 %合肥: 0.2 %合肥: 0.2 %周口: 0.2 %周口: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.2 %天津: 0.2 %孟买: 0.7 %孟买: 0.7 %宣城: 0.2 %宣城: 0.2 %广州: 0.4 %广州: 0.4 %张家口: 0.8 %张家口: 0.8 %德罕: 0.2 %德罕: 0.2 %成都: 1.7 %成都: 1.7 %扬州: 0.1 %扬州: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.1 %杭州: 1.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %淮南: 0.1 %淮南: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 1.1 %湖州: 1.1 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 11.5 %芒廷维尤: 11.5 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %蔚山: 0.7 %蔚山: 0.7 %衢州: 0.8 %衢州: 0.8 %襄阳: 0.2 %襄阳: 0.2 %西宁: 51.2 %西宁: 51.2 %西安: 0.2 %西安: 0.2 %运城: 0.1 %运城: 0.1 %郑州: 0.1 %郑州: 0.1 %钦奈: 0.5 %钦奈: 0.5 %锦州: 0.1 %锦州: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他ChinaDavisIndiaUnited States[]上海中山内江北京十堰南平卡纳塔克厦门台州合肥周口呼和浩特嘉兴天津孟买宣城广州张家口德罕成都扬州普洱杭州桃园武汉淮南深圳温州湖州漯河石家庄福州秦皇岛芒廷维尤芝加哥苏州蔚山衢州襄阳西宁西安运城郑州钦奈锦州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1417) PDF downloads(473) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return