Ma Jiming, Song Yan, Wang Qunshu, et al. Ring artifact correction for X-ray computed tomography[J]. High Power Laser and Particle Beams, 2014, 26: 124001. doi: 10.11884/HPLPB201426.124001
Citation: Ma Jiming, Song Yan, Wang Qunshu, et al. Ring artifact correction for X-ray computed tomography[J]. High Power Laser and Particle Beams, 2014, 26: 124001. doi: 10.11884/HPLPB201426.124001

Ring artifact correction for X-ray computed tomography

doi: 10.11884/HPLPB201426.124001
  • Received Date: 2014-05-17
  • Rev Recd Date: 2014-09-22
  • Publish Date: 2014-12-16
  • In this paper, a novel preprocessing technique is proposed for the correction of ring artifact in X-ray CT image. By fitting each projection in sinogram image with piecewise polynomial, a set of candidate correction factors for mis-calibrated detector is created and then the factor with maximum probability occurrence is picked out to rectify the projection data. Principle and procedure of the method is illustrated. Tests under different condition show that, sparse or continuous ring artifact in the CT image can both be well rectified effectively, while spatial resolution of the image preserved. CT images for multi-material object can also be corrected by the method.
  • Relative Articles

    [1]Guo Chenglong, Ni Peijun, Qi Zicheng, Fu Kang. Scattering correction method for cone-beam X-ray CT based on slanted-hole scattering correction plate[J]. High Power Laser and Particle Beams, 2024, 36(7): 074004. doi: 10.11884/HPLPB202436.230362
    [2]Yan Luping, Dong Lan, Wang Tong, Lu Shang, Han Yuanying, Liu Xiaoyang, Zhang Luyan, Yan Haoyue, Ma Na, He Zhenqiang, Ke Zhiyong, Men Lingling, Li Bo, Wang Xiaolong, Liang Jing, Luo Tao. Calibration method of capacitance sensor for particle accelerator wire position measurement[J]. High Power Laser and Particle Beams, 2022, 34(11): 114002. doi: 10.11884/HPLPB202234.220447
    [3]Guo Bo, Liu Dexiang, Wu Shuanghua, Ma Yue, Hua Jianfei, Lu Wei. Micro-focus computed tomography for turbine blade based on all-optical bremsstrahlung source[J]. High Power Laser and Particle Beams, 2021, 33(7): 074001. doi: 10.11884/HPLPB202133.210201
    [4]Liu Qing, Cui Xikai, Ma Longxiong, Zha Hongli, Zhou Ningxin. Sensitivity analysis of geomagnetically induced current based on hyperbolic scheme for truncating polynomial chaos expansion[J]. High Power Laser and Particle Beams, 2019, 31(7): 070010. doi: 10.11884/HPLPB201931.190106
    [5]Wang Lang, Lei Fangyan, Hu Jinguang. Reconstruction and simulation of HPM short pulse radar transmitting signal[J]. High Power Laser and Particle Beams, 2019, 31(6): 063002. doi: 10.11884/HPLPB201931.190024
    [6]Li Zhanyu, Dong Ning, Ji Feng, Gong Shaoyan, Chen Yuhao, Xie Yanzhao. Uncertainty quantification analysis of random field coupling to transmission lines based on polynomial chaos expansion method[J]. High Power Laser and Particle Beams, 2017, 29(11): 113203. doi: 10.11884/HPLPB201729.170135
    [7]Chen Yunbin, Chen Si, Li Jing. Form and correction of a new type of artifact induced by beam hardening[J]. High Power Laser and Particle Beams, 2016, 28(10): 104001. doi: 10.11884/HPLPB201628.160047
    [8]Yuan Yayun, Wang Xiaofang. Comparison between X-ray imaging by Fresnel zone plate and projection-type phase contrast imaging by numerical simulations[J]. High Power Laser and Particle Beams, 2016, 28(10): 102001. doi: 10.11884/HPLPB201628.150627
    [9]Li Weihua, Wang Yuan, Tan Xiulan, Yang Bo, Li Jing, Chen Yunbin, Zhang Chengxin, Liu Qinghua. Density characterization of gold foam sample with abnormal surface using X-ray CT technology[J]. High Power Laser and Particle Beams, 2015, 27(03): 032023. doi: 10.11884/HPLPB201527.032023
    [10]Chen Hao, Chen Yunbin, Li Shoutao. X-ray beam hardening correction based on polynomial fitting in local scanning[J]. High Power Laser and Particle Beams, 2015, 27(11): 114001. doi: 10.11884/HPLPB201527.114001
    [11]Li Ling, Gao Fuqiang, Zhou Qin, Yan Qiang, Cai Yufang. Cupping artifact correction for low-energy X-ray industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(05): 059004. doi: 10.11884/HPLPB201426.059004
    [12]Zhou Qin, Gao Fuqiang, Chen Danqing, Chen Shengfei. Design of small interval signal acquisition system for low-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2013, 25(01): 114-118. doi: 10.3788/HPLPB20132501.0114
    [13]Cai Yufang, Li Dan, Wang Jue. Edge artifact correction for industrial computed tomography images[J]. High Power Laser and Particle Beams, 2013, 25(03): 755-761. doi: 10.3788/HPLPB20132503.0755
    [14]dong jiaqin, fu sizu, wang wei, xiong jun, jia guo, fang zhiheng. Applications of point-projection radiography to high energy density physics experiment[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [15]duan li-ming, liao ping. Design of scanning motion control system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [16]duan li-ming, liao ping, zhang ping, li sheng-e. Design of data transmission system for high-energy X-ray industrial CT[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [17]chen hao, xu zhou, jin xiao, li ming, shan li jun, lu he ping, yang xing fan, deng ren pei, zhang zhi fu, liu xi san. Spot size measurement of new type Xray source designed for high energy industrial CT[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
  • Cited by

    Periodical cited type(9)

    1. 刘必成,易茜,宗春光,许艳伟,李亮. 基于梯度特征聚类分析的大尺寸物体CT图像环状伪影校正方法. CT理论与应用研究. 2024(06): 781-789 .
    2. Ou?Yi Li,Yang Wang,Qiong Zhang,Yong?Hui Li. Parallel computing approach for efficient 3?D X?ray?simulated image reconstruction. Nuclear Science and Techniques. 2023(07): 26-40 .
    3. 董建,毕丹阳,杨耿煌,秦转萍. 探测器故障下医用CT图像重建的容错算法开发. 天津职业技术师范大学学报. 2020(01): 7-12+25 .
    4. 迟大钊,马子奇,程怡,赵梓博,唐自衡. 3D打印镂空结构缺陷X射线CT检测. 焊接学报. 2018(11): 22-26+130 .
    5. 齐子诚,倪培君,李红伟,唐盛明,郭智敏. 基于多元统计的线阵CT图像环形伪影去除方法. 无损检测. 2017(12): 20-24+39 .
    6. 侯慧玲. 细节保持的锥束CT环形伪影校正(英文). Journal of Measurement Science and Instrumentation. 2016(02): 165-170 .
    7. 周意超,谢明元,杨玲,刘福祥. CT环状伪影矫正方法的改进研究. 四川大学学报(医学版). 2016(03): 420-424 .
    8. 邹永宁,杨瑞娜,罗骁,王珏. 石油岩芯CT图像裂缝分割算法研究. 强激光与粒子束. 2016(05): 167-172 . 本站查看
    9. 张磊. CT影像伪影产生原因及消除方法探讨. 中国卫生产业. 2016(28): 196-198 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 83.2 %META: 83.2 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Japan: 0.0 %Japan: 0.0 %Russian Federation: 0.1 %Russian Federation: 0.1 %San Mateo: 0.0 %San Mateo: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %三明: 0.0 %三明: 0.0 %上海: 2.4 %上海: 2.4 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东莞: 0.1 %东莞: 0.1 %中卫: 0.5 %中卫: 0.5 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丽水: 0.0 %丽水: 0.0 %乌海: 0.0 %乌海: 0.0 %乐山: 0.0 %乐山: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %北京: 19.0 %北京: 19.0 %十堰: 0.3 %十堰: 0.3 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 0.5 %南京: 0.5 %南充: 0.0 %南充: 0.0 %南宁: 0.0 %南宁: 0.0 %南平: 0.0 %南平: 0.0 %南昌: 0.3 %南昌: 0.3 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.3 %合肥: 0.3 %吉安: 0.3 %吉安: 0.3 %吉林: 0.1 %吉林: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %商丘: 0.0 %商丘: 0.0 %嘉兴: 0.3 %嘉兴: 0.3 %四平: 0.0 %四平: 0.0 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.9 %天津: 0.9 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.0 %安庆: 0.0 %安康: 0.1 %安康: 0.1 %宜宾: 0.0 %宜宾: 0.0 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.0 %宿州: 0.0 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %布鲁塞尔: 0.0 %布鲁塞尔: 0.0 %常州: 0.2 %常州: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.5 %广州: 0.5 %张家口: 0.6 %张家口: 0.6 %恩施: 0.0 %恩施: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 0.6 %成都: 0.6 %扬州: 0.5 %扬州: 0.5 %抚州: 0.0 %抚州: 0.0 %文山: 0.0 %文山: 0.0 %新乡: 0.0 %新乡: 0.0 %昆明: 0.1 %昆明: 0.1 %昌吉: 0.0 %昌吉: 0.0 %昌吉回族自治州: 0.0 %昌吉回族自治州: 0.0 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.0 %朝阳: 0.0 %本溪: 0.0 %本溪: 0.0 %杭州: 0.9 %杭州: 0.9 %桂林: 0.0 %桂林: 0.0 %武汉: 0.0 %武汉: 0.0 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.4 %济南: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.0 %淄博: 0.0 %淮北: 0.1 %淮北: 0.1 %深圳: 0.6 %深圳: 0.6 %清远: 0.0 %清远: 0.0 %温州: 0.2 %温州: 0.2 %渭南: 0.0 %渭南: 0.0 %湖州: 0.6 %湖州: 0.6 %漯河: 2.1 %漯河: 2.1 %烟台: 0.0 %烟台: 0.0 %盐城: 0.0 %盐城: 0.0 %盘锦: 0.0 %盘锦: 0.0 %石嘴山: 0.0 %石嘴山: 0.0 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 14.9 %芒廷维尤: 14.9 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %营口: 0.0 %营口: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.6 %衢州: 0.6 %西宁: 38.0 %西宁: 38.0 %西安: 0.2 %西安: 0.2 %费利蒙: 0.0 %费利蒙: 0.0 %赤峰: 0.1 %赤峰: 0.1 %运城: 0.1 %运城: 0.1 %通化: 0.1 %通化: 0.1 %遵义: 0.0 %遵义: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.3 %郑州: 1.3 %重庆: 0.3 %重庆: 0.3 %铁岭: 0.1 %铁岭: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %防城港: 0.0 %防城港: 0.0 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %青岛: 0.4 %青岛: 0.4 %鸡西: 0.0 %鸡西: 0.0 %鹰潭: 0.0 %鹰潭: 0.0 %黄冈: 0.0 %黄冈: 0.0 %其他ChinaIndiaJapanRussian FederationSan MateoTaiwan, ChinaUnited States[]三明上海上饶东京东莞中卫中山临汾丽水乌海乐山伊利诺伊州北京十堰华盛顿州南京南充南宁南平南昌南通厦门台州合肥吉安吉林吉隆坡呼和浩特哈尔滨哥伦布唐山商丘嘉兴四平多伦多大连天津威海宁波安庆安康宜宾宜春宣城宿州巴音郭楞布鲁塞尔常州平顶山广州张家口恩施惠州成都扬州抚州文山新乡昆明昌吉昌吉回族自治州普洱朝阳本溪杭州桂林武汉沈阳济南海口淄博淮北深圳清远温州渭南湖州漯河烟台盐城盘锦石嘴山石家庄福州秦皇岛绵阳芒廷维尤芜湖芝加哥苏州营口葫芦岛衡水衡阳衢州西宁西安费利蒙赤峰运城通化遵义邯郸郑州重庆铁岭长春长沙防城港阿姆斯特丹青岛鸡西鹰潭黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (2709) PDF downloads(477) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return