Liang Zhenhe, Zhou Changlin, Yu Daojie, et al. Analysis and measurement of temperature effect on electromagnetic susceptibility of embedded ADC[J]. High Power Laser and Particle Beams, 2017, 29: 053002. doi: 10.11884/HPLPB201729.170024
Citation: Li Qian, Hong Yanji, Zhao Wei, et al. Characteristics of virtual cowl formed by laser energy injected in hypersonic inlet under different inflow mach numbers[J]. High Power Laser and Particle Beams, 2014, 26: 129002. doi: 10.11884/HPLPB201426.129002

Characteristics of virtual cowl formed by laser energy injected in hypersonic inlet under different inflow mach numbers

doi: 10.11884/HPLPB201426.129002
  • Received Date: 2014-05-13
  • Rev Recd Date: 2014-09-03
  • Publish Date: 2014-12-16
  • The performance parameters of a hypersonic inlet (the designed mach number is 6) are computed using finite volume method with three dimensional unsteady compressible N-S equations, and the performance is found descending clearly. In order to improve the inlet performance, laser energy whose power is 15 kW is injected into the flow field in front of the solid cowl of inlet, and then the virtual cowl is formed. The inflow mass capture ratio increases by 34%, 20.6% and 15.6% when the inflow mach number is 4.5, 5 and 5.5 respectively. Pressure contours of the inlet at peak value of inflow mass capture ratio under different mach numbers are illustrated. Characteristics and forming mechanism of the virtual cowl are explained. The results indicate that the smaller the inflow mach number is, the lower the inflow mass capture ratio is, but relative to that without laser energy being injected, the inflow mass capture advancing level is more obvious. Under different inflow mach numbers, the optimum can be achieved through changing the configuration and position of laser induced shock wave. The optimum is the state that transmission wave formed by laser induced shock intersecting with the oblique shock in the leading edge of inflow injects on the inlet shoulder.
  • Relative Articles

    [1]Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36(4): 043022. doi: 10.11884/HPLPB202436.230236
    [2]Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097
    [3]Yuan Yueqian, Chen Zidong, Ma Hongge, Qin Feng. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32(6): 063003. doi: 10.11884/HPLPB202032.190174
    [4]Chen Kaibai, Gao Min, Zhou Xiaodong, Dao Xinyu. Analysis of coupling effect of high-power microwave on millimeter wave fuze[J]. High Power Laser and Particle Beams, 2019, 31(11): 113003. doi: 10.11884/HPLPB201931.190180
    [5]Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30(6): 063002. doi: 10.11884/HPLPB201830.170426
    [6]Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of Ⅰ layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29(09): 093002. doi: 10.11884/HPLPB201729.170087
    [7]Peng Shengren, Yuan Chengwei, Shu Ting, Wu Dapeng, Zhang Qiang. Design of Ka-band high power TM0n-TEM hybrid modes convertor[J]. High Power Laser and Particle Beams, 2016, 28(03): 033014. doi: 10.11884/HPLPB201628.033014
    [8]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Wang Yan. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27(10): 103239. doi: 10.11884/HPLPB201527.103239
    [9]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Zhao Qiang, Zhong Longquan. Numerical simulation and verification of electromagnetic pulse effect of PIN diode limiter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063018. doi: 10.11884/HPLPB201426.063018
    [10]Hu Kai, Li Tianming, Wang Haiyang, Zhou Yihong. High power microwave effect of multi-stage PIN[J]. High Power Laser and Particle Beams, 2014, 26(06): 063015. doi: 10.11884/HPLPB201426.063015
    [11]Wang Shuai, Xu Xiang, Wang Younian. Two-dimensional hybrid simulation of dual-frequency capacitively coupled CF4 plasma[J]. High Power Laser and Particle Beams, 2013, 25(09): 2297-2302. doi: 10.3788/HPLPB20132509.2297
    [12]Zhao Zhenguo, Ma Hongge, Zhao Gang, Wang Yan, Zhong Longquan. Characteristics of temperature during PIN limiter thermal damage caused by microwaves[J]. High Power Laser and Particle Beams, 2013, 25(07): 1741-1746. doi: 10.3788/HPLPB20132507.1741
    [13]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]zhang haiwei, shi xiaowei, xu le, wei feng. Design and test scheme of high power PIN limiters[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [15]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [16]chen xi, du zhengwei, gong ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [17]zhou min, guo qing-gong, huang ka-ma. Effect on peak leakage caused by junction temperature rise in PIN diode limiter[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [18]wang hai-yang, li jia-yin, zhou yi-hong, li hao, yu xiu-yun. Experimental study and PSpice simulation of PIN diode limiter[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
    [19]liu qing-xiang, ge ming-li, yuan cheng-wei, zang jie-feng. A new kind of high power microwave phase shifter[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(2)

    1. 吴旭景,王蒙军,吴建飞,李彬鸿,郝宁,高见头,李宏,张红丽. 体Si和SOI工艺SRAM芯片电磁敏感度的温度效应. 电波科学学报. 2021(01): 101-108 .
    2. 程俊平,徐志坚,周长林,张栋耀. 数字逻辑电路GPIO电磁抗扰度的热应力效应分析. 电波科学学报. 2019(04): 447-454 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 70.1 %META: 70.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 0.7 %其他: 0.7 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Japan: 0.0 %Japan: 0.0 %Koesan: 0.0 %Koesan: 0.0 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Romania: 0.0 %Romania: 0.0 %Singapore: 0.2 %Singapore: 0.2 %Ukraine: 0.1 %Ukraine: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.0 %United States: 0.0 %[]: 1.0 %[]: 1.0 %上海: 0.5 %上海: 0.5 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伊朗: 0.0 %伊朗: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 22.2 %北京: 22.2 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.1 %南京: 0.1 %印多尔: 0.1 %印多尔: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.0 %天津: 0.0 %太原: 0.1 %太原: 0.1 %宜昌: 0.0 %宜昌: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %巴中: 0.0 %巴中: 0.0 %广州: 0.1 %广州: 0.1 %张家口: 0.2 %张家口: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.2 %杭州: 0.2 %桃园: 0.0 %桃园: 0.0 %武汉: 0.4 %武汉: 0.4 %泰安: 0.0 %泰安: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纳什维尔: 0.2 %纳什维尔: 0.2 %绵阳: 0.5 %绵阳: 0.5 %罗利: 0.2 %罗利: 0.2 %艾因: 0.3 %艾因: 0.3 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 0.0 %芝加哥: 0.0 %西宁: 48.4 %西宁: 48.4 %西安: 1.5 %西安: 1.5 %西安市长安区: 0.0 %西安市长安区: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 0.4 %重庆: 0.4 %金奈: 0.0 %金奈: 0.0 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %雷德蒙德: 0.0 %雷德蒙德: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %其他其他ChinaIndiaJapanKoesanKorea Republic ofRomaniaSingaporeUkraineUnited KingdomUnited States[]上海东莞中山临汾丹东伊斯坦布尔伊朗兰州北京华盛顿州南京印多尔台州合肥咸阳哈尔科夫嘉兴天津太原宜昌宝鸡巴中广州张家口德黑兰成都扬州无锡昆明晋城普洱杭州桃园武汉泰安洛阳济南海得拉巴淄博深圳温州渭南湖州漯河福州秦皇岛纳什维尔绵阳罗利艾因芒廷维尤芝加哥西宁西安西安市长安区诺沃克贵阳运城郑州重庆金奈长沙长治阳泉雷德蒙德首尔特别

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1274) PDF downloads(449) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return