Volume 27 Issue 02
Jan.  2015
Turn off MathJax
Article Contents
Li Jianzhi, Sun Baochen. Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress[J]. High Power Laser and Particle Beams, 2015, 27: 024115. doi: 10.11884/HPLPB201527.024115
Citation: Li Jianzhi, Sun Baochen. Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress[J]. High Power Laser and Particle Beams, 2015, 27: 024115. doi: 10.11884/HPLPB201527.024115

Theory analysis of novel fiber Bragg grating temperature compensated method based on thermal stress

doi: 10.11884/HPLPB201527.024115
  • Received Date: 2014-09-05
  • Rev Recd Date: 2014-09-22
  • Publish Date: 2015-01-27
  • To solve the problem of cross sensitivity of fiber Bragg grating (FBG), a novel FBG temperature-compensated method is proposed by using a single FBG adopting a special compensated method. The basic operating principle of the temperature compensation exploited in this study is based on the material thermal stress. The relationship between strain and temperature response of FBG is theoretically analyzed. The analysis results show that the temperature and strain sensitivity coefficient should be accurately measured, the errors of mechanical process have quite great influence on the temperature-compensated results, and the cross section ratio of strain element to temperature compensated element should be less than 0.5, the length ratio of strain element to temperature compensated element can negligibly affect the temperature-compensated results. Thus, it is anticipated that length ratio should be increased as soon as possible on the base of non-influence on the temperature-compensated results.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1418) PDF downloads(480) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return