Liang Zhenhe, Zhou Changlin, Yu Daojie, et al. Analysis and measurement of temperature effect on electromagnetic susceptibility of embedded ADC[J]. High Power Laser and Particle Beams, 2017, 29: 053002. doi: 10.11884/HPLPB201729.170024
Citation: Hou Mi, Song Naibin, He Xiang, et al. S-band J-type waveguide feeding accelerating structure for free electron laser[J]. High Power Laser and Particle Beams, 2015, 27: 045109. doi: 10.11884/HPLPB201527.045109

S-band J-type waveguide feeding accelerating structure for free electron laser

doi: 10.11884/HPLPB201527.045109
  • Received Date: 2014-12-01
  • Rev Recd Date: 2015-01-04
  • Publish Date: 2015-03-23
  • With the development of the required gradient of the waveguide coupled TW accelerating structure, for preventing the undesirable transverse momentum contributions being imparted to the beam during traversal of the linac coupler cavities, the use of symmetric dual feed cylindrical cavities which have diametrically opposed side wall coupling apertures has been widely accepted. As one type of the dual feed cylindrical cavities, the prototype of the S-band J-type waveguide feeding accelerating structure developed has got a top accelerating gradient of 30 MV per meter during RF conditioning. However, the transverse gradient of the amplitude and the phase of the longitudinal electric field caused by the existence of the quadrupolar field in the dual feed cylindrical cavity, will also degrade the beam emittance. So the J-type waveguide feeding racetrack cavity is studied theoretically. With comparison of the simulation results to the cylindrical cavity, the racetrack cavity can improve the rotational symmetry of the longitudinal electric field in the non-near axis area in the transverse plane very well, which will reduce the impact of the quadrupolar field. More importantly, the J-type waveguide feeding racetrack cavity is easier in the aspect of mechanical fabrication and measurement, which seems to be a very good direction for the future dual feed accelerating structures.
  • Relative Articles

    [1]Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36(4): 043022. doi: 10.11884/HPLPB202436.230236
    [2]Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097
    [3]Yuan Yueqian, Chen Zidong, Ma Hongge, Qin Feng. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32(6): 063003. doi: 10.11884/HPLPB202032.190174
    [4]Chen Kaibai, Gao Min, Zhou Xiaodong, Dao Xinyu. Analysis of coupling effect of high-power microwave on millimeter wave fuze[J]. High Power Laser and Particle Beams, 2019, 31(11): 113003. doi: 10.11884/HPLPB201931.190180
    [5]Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30(6): 063002. doi: 10.11884/HPLPB201830.170426
    [6]Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of Ⅰ layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29(09): 093002. doi: 10.11884/HPLPB201729.170087
    [7]Peng Shengren, Yuan Chengwei, Shu Ting, Wu Dapeng, Zhang Qiang. Design of Ka-band high power TM0n-TEM hybrid modes convertor[J]. High Power Laser and Particle Beams, 2016, 28(03): 033014. doi: 10.11884/HPLPB201628.033014
    [8]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Wang Yan. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27(10): 103239. doi: 10.11884/HPLPB201527.103239
    [9]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Zhao Qiang, Zhong Longquan. Numerical simulation and verification of electromagnetic pulse effect of PIN diode limiter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063018. doi: 10.11884/HPLPB201426.063018
    [10]Hu Kai, Li Tianming, Wang Haiyang, Zhou Yihong. High power microwave effect of multi-stage PIN[J]. High Power Laser and Particle Beams, 2014, 26(06): 063015. doi: 10.11884/HPLPB201426.063015
    [11]Wang Shuai, Xu Xiang, Wang Younian. Two-dimensional hybrid simulation of dual-frequency capacitively coupled CF4 plasma[J]. High Power Laser and Particle Beams, 2013, 25(09): 2297-2302. doi: 10.3788/HPLPB20132509.2297
    [12]Zhao Zhenguo, Ma Hongge, Zhao Gang, Wang Yan, Zhong Longquan. Characteristics of temperature during PIN limiter thermal damage caused by microwaves[J]. High Power Laser and Particle Beams, 2013, 25(07): 1741-1746. doi: 10.3788/HPLPB20132507.1741
    [13]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]zhang haiwei, shi xiaowei, xu le, wei feng. Design and test scheme of high power PIN limiters[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [15]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [16]chen xi, du zhengwei, gong ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [17]zhou min, guo qing-gong, huang ka-ma. Effect on peak leakage caused by junction temperature rise in PIN diode limiter[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [18]wang hai-yang, li jia-yin, zhou yi-hong, li hao, yu xiu-yun. Experimental study and PSpice simulation of PIN diode limiter[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
    [19]liu qing-xiang, ge ming-li, yuan cheng-wei, zang jie-feng. A new kind of high power microwave phase shifter[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(5)

    1. 岳嘉瑞,张妙瑜,段雁超. 高功率微波与射频模块耦合仿真研究. 计量与测试技术. 2024(04): 63-65 .
    2. 叶志红,鲁唱唱,张玉. 立体弯折线缆线束电磁耦合分析的时域混合算法. 电子与信息学报. 2023(12): 4345-4351 .
    3. 叶志红,汝梦祖,吴小林,张玉. PCB上微带线的电磁耦合时域建模分析方法. 微波学报. 2022(04): 7-11+36 .
    4. 梅志林,李瑞,封斌. 通信装备高功率微波屏蔽效能研究. 广州航海学院学报. 2019(03): 58-61 .
    5. 张琦,石立华,刘斌,杨静. 线束端接非线性负载精简计算模型. 高电压技术. 2016(11): 3676-3682 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 70.1 %META: 70.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 0.7 %其他: 0.7 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Japan: 0.0 %Japan: 0.0 %Koesan: 0.0 %Koesan: 0.0 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Romania: 0.0 %Romania: 0.0 %Singapore: 0.2 %Singapore: 0.2 %Ukraine: 0.1 %Ukraine: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.0 %United States: 0.0 %[]: 1.0 %[]: 1.0 %上海: 0.5 %上海: 0.5 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伊朗: 0.0 %伊朗: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 22.2 %北京: 22.2 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.1 %南京: 0.1 %印多尔: 0.1 %印多尔: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.0 %天津: 0.0 %太原: 0.1 %太原: 0.1 %宜昌: 0.0 %宜昌: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %巴中: 0.0 %巴中: 0.0 %广州: 0.1 %广州: 0.1 %张家口: 0.2 %张家口: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.2 %杭州: 0.2 %桃园: 0.0 %桃园: 0.0 %武汉: 0.4 %武汉: 0.4 %泰安: 0.0 %泰安: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纳什维尔: 0.2 %纳什维尔: 0.2 %绵阳: 0.5 %绵阳: 0.5 %罗利: 0.2 %罗利: 0.2 %艾因: 0.3 %艾因: 0.3 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 0.0 %芝加哥: 0.0 %西宁: 48.4 %西宁: 48.4 %西安: 1.5 %西安: 1.5 %西安市长安区: 0.0 %西安市长安区: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 0.4 %重庆: 0.4 %金奈: 0.0 %金奈: 0.0 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %雷德蒙德: 0.0 %雷德蒙德: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %其他其他ChinaIndiaJapanKoesanKorea Republic ofRomaniaSingaporeUkraineUnited KingdomUnited States[]上海东莞中山临汾丹东伊斯坦布尔伊朗兰州北京华盛顿州南京印多尔台州合肥咸阳哈尔科夫嘉兴天津太原宜昌宝鸡巴中广州张家口德黑兰成都扬州无锡昆明晋城普洱杭州桃园武汉泰安洛阳济南海得拉巴淄博深圳温州渭南湖州漯河福州秦皇岛纳什维尔绵阳罗利艾因芒廷维尤芝加哥西宁西安西安市长安区诺沃克贵阳运城郑州重庆金奈长沙长治阳泉雷德蒙德首尔特别

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1493) PDF downloads(454) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return