Zhang Hongwei, Liu Chaoyang, Yu Zhihua, et al. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30: 073008. doi: 10.11884/HPLPB201830.170531
Citation: Zhou Fang, Liu Qibin, Zheng Bo. Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating[J]. High Power Laser and Particle Beams, 2015, 27: 119001. doi: 10.11884/HPLPB201527.119001

Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating

doi: 10.11884/HPLPB201527.119001
  • Received Date: 2015-08-10
  • Rev Recd Date: 2015-09-15
  • Publish Date: 2015-10-27
  • In order to improve the wear resistance and high-temperature oxidation resistance of materials surface, MoFeCrTiW high-entropy alloy coating, named MoFeCrTiW HEA coating, was fabricated on Q235 steel by laser cladding. The effect of silicon and aluminum on the microstructure, phase, wear resistance and high-temperature oxidation resistance were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and wear tester. The results show that the microstructure of MoFeCrTiW HEA cladding coating is composed of equiaxed grains. After adding equimolar silicon or aluminum respectively, the microstructure of coating is eutectic or dendrites. The microstructure consists of fine equiaxed grains when adding equimolar silicon and aluminum simultaneously. The main phase of HEA coatings is BCC structure. With the addition of silicon and aluminum, the lattice constants of BCC are reduced. Adding equimolar aluminum can contribute to restrain the formation of intermetallic compound and decrease the wear resistance of coatings, whereas adding equimolar silicon can promote the formation of intermetallic compound and some unknown phases, then the wear resistance of coatings can be increased. MoFeCrTiW HEA cladding coating exhibits high oxidation resistance at 800 ℃, the high temperature oxidation of coatings can be further increased after adding silicon and aluminum.
  • Relative Articles

    [1]Wei Yihong, Li Xiangqiang, Su Yiyu, Zhang Jianqiong, Wang Qingfeng. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36(7): 073005. doi: 10.11884/HPLPB202436.230421
    [2]Li Yi, Wang Haomiao, Zhang Liang, He Yuwen, Zhou Kun, Du Weichuan, He Linan, Hu Yao, Wu Deyong, Gao Songxin, Tang Chun. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35(11): 111002. doi: 10.11884/HPLPB202335.230073
    [3]Zhou Hao, Cai Weihong, Wang Jiaoyin, Li Tianming. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33(7): 073007. doi: 10.11884/HPLPB202133.210089
    [4]Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33(7): 073003. doi: 10.11884/HPLPB202133.210124
    [5]Chu Kairong, Sheng Xing, Li Dongfeng, Dou Yue, Zhong Yong, Zhang Shiqiao. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103012. doi: 10.11884/HPLPB202032.200211
    [6]Tan Weibing, Cao Yibing, Song Wei, Chen Changhua, Li Xiaoze, Zhang Ligang, Zhu Xiaoxin. A Ku band high efficiency coaxial relativistic backwardwave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2016, 28(09): 093002. doi: 10.11884/HPLPB201628.151098
    [7]Liang Qinjin, Chen Shitao, Yu Chuan. Development of 1.2 kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26(10): 103002. doi: 10.11884/HPLPB201426.103002
    [8]Liu Meiqin, Liu Chunliang, Wang Hongguang, Bao Rong, Li Yansong, Fan Zhuangzhuang. RF input technology in A6 magnetron with diffraction output[J]. High Power Laser and Particle Beams, 2013, 25(10): 2636-2642. doi: 10.3788/HPLPB20132510.2636
    [9]Zhang Xuehui, Jiang Menghua, Liu Bin, Hui Yongling, Lei Hong, Li Qiang. High efficiency Nd:YVO4/LBO critical phase matching green laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2831-2835. doi: 10.3788/HPLPB20132511.2831
    [10]Tang Yongfu, Meng Lin, Li Hailong, Wang Bin, Yin Yong, Zhang Feina. Particle simulation of high-efficiency X-band dual-frequency coaxial relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2415-2419. doi: 10.3788/HPLPB20122410.2415
    [11]su li, li tianming, li jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [12]zhang zhengquan, liu qingxiang, wu zhipeng, yang he. Series resonant converter based on HF AC-link technology[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]li tianming, li jiayin, dong feifei, yu xiuyun, wang haiyang, li hao, zhou yihong. Self-magnetic field in relativistic magnetron[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [14]yu xinhua, meng lin, niu xinjian. Design of 94 GHz second-harmonic complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [15]zhang zhengquan, liu qingxiang, xiang xin, zhang pengpeng, wu zhipeng. High-frequency rectifying commutated converter[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]he hu. Analysis of L-band high-efficiency gap-current magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]li tian-ming, li jia-yin, ma wen-duo, zhang bing, yu xiu-yun, li hao, wang hai-yang, zhou yi-hong, zhang ting-wei, zou huan. An experimental invesigation of frequency-agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [18]zou huan, li jia-yin, li tian-ming, wang hai-yang, zhang ting-wei, li hao, yu xiu-yun. Optimization of tunable bandwidth of agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [19]li tian ming, li jia yin, sun da rui, yu xiu yun, wang hai yang, li hao, ge peng. Primary design of Sband tunable relativistic magnetron[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [20]li tian-ming, li jia-yin, yu xiu-yun, ma wen-duo, ge peng. Prepulse effects on the characteristics of relativistic magnetron[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
  • Cited by

    Periodical cited type(1)

    1. 秦洪才,袁成卫,宁辉,孙云飞,张强,许亮,严鹏. 高功率平板波导螺旋阵列天线设计. 强激光与粒子束. 2021(02): 52-56 . 本站查看

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 75.1 %META: 75.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %其他: 4.3 %其他: 4.3 %Canton: 0.1 %Canton: 0.1 %China: 1.0 %China: 1.0 %India: 0.2 %India: 0.2 %Indianapolis: 0.2 %Indianapolis: 0.2 %Iran (ISLAMIC Republic Of): 0.4 %Iran (ISLAMIC Republic Of): 0.4 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Seongnam-si: 0.2 %Seongnam-si: 0.2 %United States: 0.9 %United States: 0.9 %Vleuten: 0.5 %Vleuten: 0.5 %[]: 1.8 %[]: 1.8 %三明: 0.1 %三明: 0.1 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 3.1 %北京: 3.1 %南京: 0.3 %南京: 0.3 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.7 %台州: 0.7 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %孟买: 0.2 %孟买: 0.2 %安卡拉: 0.2 %安卡拉: 0.2 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %巴黎: 0.2 %巴黎: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 0.1 %张家口: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %无锡: 0.2 %无锡: 0.2 %昭通: 0.1 %昭通: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.5 %杭州: 0.5 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.1 %桂林: 0.1 %武汉: 0.5 %武汉: 0.5 %汉堡: 0.2 %汉堡: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 0.2 %济南: 0.2 %海法: 0.2 %海法: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.3 %湖州: 0.3 %湘西: 0.5 %湘西: 0.5 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.6 %绵阳: 0.6 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 36.2 %芒廷维尤: 36.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 26.3 %西宁: 26.3 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %贺州: 0.1 %贺州: 0.1 %运城: 1.1 %运城: 1.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %首尔: 0.2 %首尔: 0.2 %其他其他CantonChinaIndiaIndianapolisIran (ISLAMIC Republic Of)Korea Republic ofPakistanSeongnam-siUnited StatesVleuten[]三明上海东莞中山丹东丽水伊斯坦布尔佛山保定兰州北京南京博阿努瓦台州哈尔科夫哥伦布孟买安卡拉安康宣城宿州密蘇里城岳阳巴黎广州张家口成都扬州无锡昭通普洱杭州株洲格兰特县桂林武汉汉堡沈阳泉州济南海法深圳湖州湘西漯河烟台石家庄福州秦皇岛绵阳肇庆芒廷维尤芝加哥苏州莫斯科衢州襄阳西宁西安贵阳贺州运城邯郸郑州重庆长春长沙长治阳泉阿什本首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1267) PDF downloads(485) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return