Zhang Dapeng, Gao Yang, Jia Le, et al. Layout design method for BAW ladder filters[J]. High Power Laser and Particle Beams, 2018, 30: 014101. doi: 10.11884/HPLPB201830.170112
Citation: Jiao Luguang, Zhao Guomin, Li Junshen, et al. Natural convection flow in a liquid tank induced by laser irradiation[J]. High Power Laser and Particle Beams, 2015, 27: 121006. doi: 10.11884/HPLPB201527.121006

Natural convection flow in a liquid tank induced by laser irradiation

doi: 10.11884/HPLPB201527.121006
  • Received Date: 2015-09-19
  • Rev Recd Date: 2015-10-31
  • Publish Date: 2015-11-26
  • Liquid tank is a potential part irradiated by laser in laser-matter interaction research. In this paper, laser irradiation effects on a water tank were investigated by experiments and numerical simulations on the condition that the water was in a natural convection state. The irradiation mechanisms are described as follows: at the initial stage of laser irradiation, the center region of the aluminum wall had an obvious temperature increase due to laser heating, and the temperature of the water near the wall also had a slight increase. With the time evolution, the water temperature became larger and higher, and the magnitude of the max velocity on the line, which was perpendicular to the plate and passed through the laser spot center, kept on increasing in response to the temperature increase, thus the heat transfer intensity continued increasing. With the increase of the heat transfer intensity, the temperature rise rate of the aluminum wall decreased gradually. When the energy absorbed by the wall could be taken away by the water natural convection, the temperature rise rate of the plate center approached zero.
  • Relative Articles

    [1]Cheng Dan, Zhang Kun, Fang Yitao, Zhang Haobin, Cheng Zhaochen, Wu Tong, Yu Yang, Sun Rufeng, Li Yao, Song Kuiyan, Zhang Liming, Zhang Dayong, Zhao Hong, Feng Ting. Theoretical simulation of compound ring cavity filter for single longitudinal mode fiber laser[J]. High Power Laser and Particle Beams, 2023, 35(12): 121001. doi: 10.11884/HPLPB202335.230145
    [2]Tuo Huanxiang, Sun Baogen, Luo Qing, Wu Fangfang, Zhou Tianyu, Lu Ping. Design and simulation of the coupler of single resonant cavity bunch length monitor[J]. High Power Laser and Particle Beams, 2022, 34(4): 044002. doi: 10.11884/HPLPB202234.210261
    [3]Gao Yang, Wen Shuwen, Yuan Jing, Xu Xiaqian. Design of interdigital-filter based diplexer with high isolation and wideband[J]. High Power Laser and Particle Beams, 2019, 31(8): 084101. doi: 10.11884/HPLPB201931.180308
    [4]Wang Xian, Zhang Dewei, Wang Shuxing, Lü Dalong, Zhang Yi. Characteristic analysis of folded HMSIW and implements in equalizers and filters[J]. High Power Laser and Particle Beams, 2019, 31(9): 093206. doi: 10.11884/HPLPB201931.190134
    [5]Wen Shuwen, Gao Yang, Xu Xiaqian. Initial design procedure of microstrip interdigital filter with tapped-line[J]. High Power Laser and Particle Beams, 2018, 30(7): 074101. doi: 10.11884/HPLPB201830.180007
    [6]Wen Shuwen, Gao Yang, Xu Xiaxi. Grounding via-hole effect pre-considered microstrip interdigital filter design[J]. High Power Laser and Particle Beams, 2018, 30(8): 084101. doi: 10.11884/HPLPB201830.180093
    [7]Gao Yang, Lei Qiang, Zhao Junwu, Lv Junguang. Research status and development trend of micro-mechanical resonance accelerometer[J]. High Power Laser and Particle Beams, 2017, 29(08): 080201. doi: 10.11884/HPLPB201729.170045
    [8]Jia Le, Gao Yang, Han Chao, Lv Junguang. Design of bulk acoustic wave filter for Wi-Fi band[J]. High Power Laser and Particle Beams, 2017, 29(10): 104104. doi: 10.11884/HPLPB201729.170141
    [9]Gao Yang, Zhao Kunli, Han Chao. Design of S-band narrow-band bandpass bulk acoustic wave filter[J]. High Power Laser and Particle Beams, 2017, 29(11): 114101. doi: 10.11884/HPLPB201729.170195
    [10]Ni Yuan, Ji Ke, Wang Jingli, Chen Heming. Four-wavelength THz filter based on photonic crystal ring resonator[J]. High Power Laser and Particle Beams, 2016, 28(10): 103101. doi: 10.11884/HPLPB201628.160055
    [11]Gao Yang, Zhao Kunli, Zhao Junwu. Calculus-like analysis method for analyzing bulk acoustic wave force sensors’ sensitivity[J]. High Power Laser and Particle Beams, 2016, 28(06): 064101. doi: 10.11884/HPLPB201628.064101
    [12]Zhang Yongliang, Su Tao, Wu Bian, Yan Jiaxin. An improved computer-aided tuning method for microwave filters[J]. High Power Laser and Particle Beams, 2015, 27(12): 123003. doi: 10.11884/HPLPB201527.123003
    [13]He Wanjing, Gao Yang, Li Junru, Huang Zhenhua. Force-sensing characteristics of film bulk acoustic resonator[J]. High Power Laser and Particle Beams, 2015, 27(02): 024117. doi: 10.11884/HPLPB201527.024117
    [14]Cai Xun, Gao Yang, Huang Zhenhua. Parametric design method of Tx and Rx filter in bulk acoustic wave duplexer[J]. High Power Laser and Particle Beams, 2015, 27(12): 124101. doi: 10.11884/HPLPB201527.124101
    [15]Sun Peng, Li Xiangqiang, Liu Qingxiang, Zhang Zhengquan, Li Wei. Output LC filter parameter optimization of single-phase parallel resonant converter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063027. doi: 10.11884/HPLPB201426.063027
    [16]Lu Bin, Cui Bohua. Analysis and design of terahertz waveguide filter[J]. High Power Laser and Particle Beams, 2013, 25(06): 1527-1529. doi: 10.3788/HPLPB20132506.1527
    [17]Zhou Hai, Wu Wenkai, Lin Donghui, Chen Gang, Chen Liangming, Zhang Junwei, Xu Yuanli, Lian Kenan, Fu Xuejun, Chen Xiaojuan, Wang Meicong, Huang Zhan, Fu Xuenong, Jue Xinghua, Zhu MingZhi, Wei Xiaofeng, Zhang Xiaomin. Review on opto-mechanical structure design of megajoule high-power laser driver[J]. High Power Laser and Particle Beams, 2012, 24(10): 2277-2283. doi: 10.3788/HPLPB20122410.2277
    [18]liu qineng. Theoretic study of total reflection through effect polarization filter of photonic crystal[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [19]hu fangrong, yao jun. Microelectromechanical systems deformable mirror actuator based on electrostatic repulsive force[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [20]li guo-lin, shu ting, yuan cheng-wei. Output multiplexer for S band high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
  • Cited by

    Periodical cited type(3)

    1. 谭鹏辉,郭辉辉,安嘉乐,刘婷婷. 基于改进人工蜂群算法的体声波滤波器自动布局. 计算机应用研究. 2023(12): 3660-3665 .
    2. 李丽,赵益良,李宏军. 用于C波段的薄膜体声波谐振器滤波器. 半导体技术. 2019(12): 951-955 .
    3. 贾乐,高杨,张大鹏. 体声波滤波器自动布局工具的设计开发. 压电与声光. 2018(04): 483-486 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 74.9 %META: 74.9 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.0 %其他: 9.0 %其他: 0.7 %其他: 0.7 %Bacoor: 0.1 %Bacoor: 0.1 %China: 0.4 %China: 0.4 %Clemmons: 0.1 %Clemmons: 0.1 %India: 0.0 %India: 0.0 %Indianapolis: 0.1 %Indianapolis: 0.1 %Kao-sung: 0.0 %Kao-sung: 0.0 %Malvern: 0.2 %Malvern: 0.2 %Nahant: 0.2 %Nahant: 0.2 %Rochester: 0.2 %Rochester: 0.2 %San Lorenzo: 0.0 %San Lorenzo: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.3 %United States: 0.3 %[]: 1.1 %[]: 1.1 %上海: 2.1 %上海: 2.1 %东莞: 0.2 %东莞: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %丹佛: 0.4 %丹佛: 0.4 %丽水: 0.1 %丽水: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %列治文山: 0.1 %列治文山: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %加尔各答: 0.1 %加尔各答: 0.1 %北京: 9.6 %北京: 9.6 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南昌: 0.0 %南昌: 0.0 %南通: 0.0 %南通: 0.0 %厦门: 0.4 %厦门: 0.4 %台北: 0.5 %台北: 0.5 %台州: 0.7 %台州: 0.7 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.5 %嘉兴: 0.5 %圣何塞: 0.3 %圣何塞: 0.3 %圣地亚哥: 0.1 %圣地亚哥: 0.1 %圣罗莎: 0.2 %圣罗莎: 0.2 %夏洛特: 0.3 %夏洛特: 0.3 %多伦多: 0.1 %多伦多: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.0 %太原: 0.0 %孝感: 0.1 %孝感: 0.1 %宁波: 0.1 %宁波: 0.1 %安那罕: 0.2 %安那罕: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.1 %密蘇里城: 0.1 %尼古湖: 0.2 %尼古湖: 0.2 %巴里: 0.0 %巴里: 0.0 %常州: 0.1 %常州: 0.1 %常州市天宁区: 0.0 %常州市天宁区: 0.0 %广州: 0.9 %广州: 0.9 %张家口: 0.1 %张家口: 0.1 %徐州: 0.0 %徐州: 0.0 %德罕: 0.9 %德罕: 0.9 %成都: 0.6 %成都: 0.6 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.0 %新乡: 0.0 %无锡: 0.5 %无锡: 0.5 %昆明: 0.0 %昆明: 0.0 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %景德镇: 0.3 %景德镇: 0.3 %曲靖: 0.1 %曲靖: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.5 %武汉: 0.5 %武汉市蔡甸区: 0.0 %武汉市蔡甸区: 0.0 %比拉德坎斯: 0.1 %比拉德坎斯: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河源: 0.1 %河源: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %淮北: 0.0 %淮北: 0.0 %深圳: 2.0 %深圳: 2.0 %清远: 0.0 %清远: 0.0 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %滑铁卢: 0.4 %滑铁卢: 0.4 %漯河: 1.5 %漯河: 1.5 %琼海: 0.1 %琼海: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.8 %绵阳: 0.8 %罗利: 0.1 %罗利: 0.1 %聊城: 0.1 %聊城: 0.1 %自贡: 0.0 %自贡: 0.0 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 29.2 %西宁: 29.2 %西安: 0.6 %西安: 0.6 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %费城: 0.2 %费城: 0.2 %路易斯维尔: 0.1 %路易斯维尔: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.2 %重庆: 0.2 %长沙: 1.2 %长沙: 1.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.2 %青岛: 0.2 %韩国大邱: 0.0 %韩国大邱: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马哈拉施特拉邦: 0.1 %马哈拉施特拉邦: 0.1 %马德里: 0.1 %马德里: 0.1 %其他其他BacoorChinaClemmonsIndiaIndianapolisKao-sungMalvernNahantRochesterSan LorenzoTaiwan, ChinaUnited States[]上海东莞中山临汾丹东丹佛丽水佛山保定列治文山加利福尼亚州加尔各答北京十堰南京南昌南通厦门台北台州合肥哥伦布嘉兴圣何塞圣地亚哥圣罗莎夏洛特多伦多天津太原孝感宁波安那罕宣城密蘇里城尼古湖巴里常州常州市天宁区广州张家口徐州德罕成都成都市双流区扬州新乡无锡昆明晋城普洱景德镇曲靖杭州武汉武汉市蔡甸区比拉德坎斯沈阳河源洛阳济南淄博淮北深圳清远温州湖州滑铁卢漯河琼海石家庄福州秦皇岛纽约绵阳罗利聊城自贡芒廷维尤芝加哥苏州衡阳衢州襄阳西宁西安诺伊达诺沃克贵阳费城路易斯维尔运城邯郸郑州鄂州重庆长沙长治阳泉青岛韩国大邱香港特别行政区马哈拉施特拉邦马德里

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1158) PDF downloads(344) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return